Copyright | (c) 2013-2021 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay+amazonka@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
- Service Configuration
- Errors
- Waiters
- Operations
- UpdateDataSource
- DeleteDataSource
- DescribeTags
- CreateDataSourceFromRedshift
- CreateDataSourceFromS3
- CreateMLModel
- DeleteTags
- DeleteBatchPrediction
- UpdateBatchPrediction
- GetMLModel
- GetDataSource
- UpdateEvaluation
- DeleteEvaluation
- DeleteMLModel
- UpdateMLModel
- GetBatchPrediction
- DescribeBatchPredictions (Paginated)
- CreateDataSourceFromRDS
- CreateEvaluation
- Predict
- DeleteRealtimeEndpoint
- CreateBatchPrediction
- GetEvaluation
- DescribeEvaluations (Paginated)
- CreateRealtimeEndpoint
- AddTags
- DescribeMLModels (Paginated)
- DescribeDataSources (Paginated)
- Types
- Algorithm
- BatchPredictionFilterVariable
- DataSourceFilterVariable
- DetailsAttributes
- EntityStatus
- EvaluationFilterVariable
- MLModelFilterVariable
- MLModelType
- RealtimeEndpointStatus
- SortOrder
- TaggableResourceType
- BatchPrediction
- DataSource
- Evaluation
- MLModel
- PerformanceMetrics
- Prediction
- RDSDataSpec
- RDSDatabase
- RDSDatabaseCredentials
- RDSMetadata
- RealtimeEndpointInfo
- RedshiftDataSpec
- RedshiftDatabase
- RedshiftDatabaseCredentials
- RedshiftMetadata
- S3DataSpec
- Tag
Derived from API version 2014-12-12
of the AWS service descriptions, licensed under Apache 2.0.
Definition of the public APIs exposed by Amazon Machine Learning
Synopsis
- defaultService :: Service
- _InvalidTagException :: AsError a => Getting (First ServiceError) a ServiceError
- _InternalServerException :: AsError a => Getting (First ServiceError) a ServiceError
- _InvalidInputException :: AsError a => Getting (First ServiceError) a ServiceError
- _IdempotentParameterMismatchException :: AsError a => Getting (First ServiceError) a ServiceError
- _TagLimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError
- _PredictorNotMountedException :: AsError a => Getting (First ServiceError) a ServiceError
- _ResourceNotFoundException :: AsError a => Getting (First ServiceError) a ServiceError
- _LimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError
- newMLModelAvailable :: Wait DescribeMLModels
- newBatchPredictionAvailable :: Wait DescribeBatchPredictions
- newDataSourceAvailable :: Wait DescribeDataSources
- newEvaluationAvailable :: Wait DescribeEvaluations
- data UpdateDataSource = UpdateDataSource' Text Text
- newUpdateDataSource :: Text -> Text -> UpdateDataSource
- data UpdateDataSourceResponse = UpdateDataSourceResponse' (Maybe Text) Int
- newUpdateDataSourceResponse :: Int -> UpdateDataSourceResponse
- data DeleteDataSource = DeleteDataSource' Text
- newDeleteDataSource :: Text -> DeleteDataSource
- data DeleteDataSourceResponse = DeleteDataSourceResponse' (Maybe Text) Int
- newDeleteDataSourceResponse :: Int -> DeleteDataSourceResponse
- data DescribeTags = DescribeTags' Text TaggableResourceType
- newDescribeTags :: Text -> TaggableResourceType -> DescribeTags
- data DescribeTagsResponse = DescribeTagsResponse' (Maybe Text) (Maybe TaggableResourceType) (Maybe [Tag]) Int
- newDescribeTagsResponse :: Int -> DescribeTagsResponse
- data CreateDataSourceFromRedshift = CreateDataSourceFromRedshift' (Maybe Text) (Maybe Bool) Text RedshiftDataSpec Text
- newCreateDataSourceFromRedshift :: Text -> RedshiftDataSpec -> Text -> CreateDataSourceFromRedshift
- data CreateDataSourceFromRedshiftResponse = CreateDataSourceFromRedshiftResponse' (Maybe Text) Int
- newCreateDataSourceFromRedshiftResponse :: Int -> CreateDataSourceFromRedshiftResponse
- data CreateDataSourceFromS3 = CreateDataSourceFromS3' (Maybe Text) (Maybe Bool) Text S3DataSpec
- newCreateDataSourceFromS3 :: Text -> S3DataSpec -> CreateDataSourceFromS3
- data CreateDataSourceFromS3Response = CreateDataSourceFromS3Response' (Maybe Text) Int
- newCreateDataSourceFromS3Response :: Int -> CreateDataSourceFromS3Response
- data CreateMLModel = CreateMLModel' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe (HashMap Text Text)) Text MLModelType Text
- newCreateMLModel :: Text -> MLModelType -> Text -> CreateMLModel
- data CreateMLModelResponse = CreateMLModelResponse' (Maybe Text) Int
- newCreateMLModelResponse :: Int -> CreateMLModelResponse
- data DeleteTags = DeleteTags' [Text] Text TaggableResourceType
- newDeleteTags :: Text -> TaggableResourceType -> DeleteTags
- data DeleteTagsResponse = DeleteTagsResponse' (Maybe Text) (Maybe TaggableResourceType) Int
- newDeleteTagsResponse :: Int -> DeleteTagsResponse
- data DeleteBatchPrediction = DeleteBatchPrediction' Text
- newDeleteBatchPrediction :: Text -> DeleteBatchPrediction
- data DeleteBatchPredictionResponse = DeleteBatchPredictionResponse' (Maybe Text) Int
- newDeleteBatchPredictionResponse :: Int -> DeleteBatchPredictionResponse
- data UpdateBatchPrediction = UpdateBatchPrediction' Text Text
- newUpdateBatchPrediction :: Text -> Text -> UpdateBatchPrediction
- data UpdateBatchPredictionResponse = UpdateBatchPredictionResponse' (Maybe Text) Int
- newUpdateBatchPredictionResponse :: Int -> UpdateBatchPredictionResponse
- data GetMLModel = GetMLModel' (Maybe Bool) Text
- newGetMLModel :: Text -> GetMLModel
- data GetMLModelResponse = GetMLModelResponse' (Maybe EntityStatus) (Maybe POSIX) (Maybe (HashMap Text Text)) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe Text) (Maybe POSIX) (Maybe Double) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe RealtimeEndpointInfo) (Maybe Text) (Maybe Text) (Maybe MLModelType) Int
- newGetMLModelResponse :: Int -> GetMLModelResponse
- data GetDataSource = GetDataSource' (Maybe Bool) Text
- newGetDataSource :: Text -> GetDataSource
- data GetDataSourceResponse = GetDataSourceResponse' (Maybe EntityStatus) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe RDSMetadata) (Maybe Integer) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Bool) (Maybe Text) (Maybe RedshiftMetadata) (Maybe Text) (Maybe Text) Int
- newGetDataSourceResponse :: Int -> GetDataSourceResponse
- data UpdateEvaluation = UpdateEvaluation' Text Text
- newUpdateEvaluation :: Text -> Text -> UpdateEvaluation
- data UpdateEvaluationResponse = UpdateEvaluationResponse' (Maybe Text) Int
- newUpdateEvaluationResponse :: Int -> UpdateEvaluationResponse
- data DeleteEvaluation = DeleteEvaluation' Text
- newDeleteEvaluation :: Text -> DeleteEvaluation
- data DeleteEvaluationResponse = DeleteEvaluationResponse' (Maybe Text) Int
- newDeleteEvaluationResponse :: Int -> DeleteEvaluationResponse
- data DeleteMLModel = DeleteMLModel' Text
- newDeleteMLModel :: Text -> DeleteMLModel
- data DeleteMLModelResponse = DeleteMLModelResponse' (Maybe Text) Int
- newDeleteMLModelResponse :: Int -> DeleteMLModelResponse
- data UpdateMLModel = UpdateMLModel' (Maybe Text) (Maybe Double) Text
- newUpdateMLModel :: Text -> UpdateMLModel
- data UpdateMLModelResponse = UpdateMLModelResponse' (Maybe Text) Int
- newUpdateMLModelResponse :: Int -> UpdateMLModelResponse
- data GetBatchPrediction = GetBatchPrediction' Text
- newGetBatchPrediction :: Text -> GetBatchPrediction
- data GetBatchPredictionResponse = GetBatchPredictionResponse' (Maybe EntityStatus) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Text) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) Int
- newGetBatchPredictionResponse :: Int -> GetBatchPredictionResponse
- data DescribeBatchPredictions = DescribeBatchPredictions' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe BatchPredictionFilterVariable) (Maybe Text)
- newDescribeBatchPredictions :: DescribeBatchPredictions
- data DescribeBatchPredictionsResponse = DescribeBatchPredictionsResponse' (Maybe [BatchPrediction]) (Maybe Text) Int
- newDescribeBatchPredictionsResponse :: Int -> DescribeBatchPredictionsResponse
- data CreateDataSourceFromRDS = CreateDataSourceFromRDS' (Maybe Text) (Maybe Bool) Text RDSDataSpec Text
- newCreateDataSourceFromRDS :: Text -> RDSDataSpec -> Text -> CreateDataSourceFromRDS
- data CreateDataSourceFromRDSResponse = CreateDataSourceFromRDSResponse' (Maybe Text) Int
- newCreateDataSourceFromRDSResponse :: Int -> CreateDataSourceFromRDSResponse
- data CreateEvaluation = CreateEvaluation' (Maybe Text) Text Text Text
- newCreateEvaluation :: Text -> Text -> Text -> CreateEvaluation
- data CreateEvaluationResponse = CreateEvaluationResponse' (Maybe Text) Int
- newCreateEvaluationResponse :: Int -> CreateEvaluationResponse
- data Predict = Predict' Text (HashMap Text Text) Text
- newPredict :: Text -> Text -> Predict
- data PredictResponse = PredictResponse' (Maybe Prediction) Int
- newPredictResponse :: Int -> PredictResponse
- data DeleteRealtimeEndpoint = DeleteRealtimeEndpoint' Text
- newDeleteRealtimeEndpoint :: Text -> DeleteRealtimeEndpoint
- data DeleteRealtimeEndpointResponse = DeleteRealtimeEndpointResponse' (Maybe RealtimeEndpointInfo) (Maybe Text) Int
- newDeleteRealtimeEndpointResponse :: Int -> DeleteRealtimeEndpointResponse
- data CreateBatchPrediction = CreateBatchPrediction' (Maybe Text) Text Text Text Text
- newCreateBatchPrediction :: Text -> Text -> Text -> Text -> CreateBatchPrediction
- data CreateBatchPredictionResponse = CreateBatchPredictionResponse' (Maybe Text) Int
- newCreateBatchPredictionResponse :: Int -> CreateBatchPredictionResponse
- data GetEvaluation = GetEvaluation' Text
- newGetEvaluation :: Text -> GetEvaluation
- data GetEvaluationResponse = GetEvaluationResponse' (Maybe EntityStatus) (Maybe PerformanceMetrics) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) Int
- newGetEvaluationResponse :: Int -> GetEvaluationResponse
- data DescribeEvaluations = DescribeEvaluations' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe EvaluationFilterVariable) (Maybe Text)
- newDescribeEvaluations :: DescribeEvaluations
- data DescribeEvaluationsResponse = DescribeEvaluationsResponse' (Maybe [Evaluation]) (Maybe Text) Int
- newDescribeEvaluationsResponse :: Int -> DescribeEvaluationsResponse
- data CreateRealtimeEndpoint = CreateRealtimeEndpoint' Text
- newCreateRealtimeEndpoint :: Text -> CreateRealtimeEndpoint
- data CreateRealtimeEndpointResponse = CreateRealtimeEndpointResponse' (Maybe RealtimeEndpointInfo) (Maybe Text) Int
- newCreateRealtimeEndpointResponse :: Int -> CreateRealtimeEndpointResponse
- data AddTags = AddTags' [Tag] Text TaggableResourceType
- newAddTags :: Text -> TaggableResourceType -> AddTags
- data AddTagsResponse = AddTagsResponse' (Maybe Text) (Maybe TaggableResourceType) Int
- newAddTagsResponse :: Int -> AddTagsResponse
- data DescribeMLModels = DescribeMLModels' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe MLModelFilterVariable) (Maybe Text)
- newDescribeMLModels :: DescribeMLModels
- data DescribeMLModelsResponse = DescribeMLModelsResponse' (Maybe [MLModel]) (Maybe Text) Int
- newDescribeMLModelsResponse :: Int -> DescribeMLModelsResponse
- data DescribeDataSources = DescribeDataSources' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe DataSourceFilterVariable) (Maybe Text)
- newDescribeDataSources :: DescribeDataSources
- data DescribeDataSourcesResponse = DescribeDataSourcesResponse' (Maybe [DataSource]) (Maybe Text) Int
- newDescribeDataSourcesResponse :: Int -> DescribeDataSourcesResponse
- newtype Algorithm where
- Algorithm' { }
- pattern Algorithm_Sgd :: Algorithm
- newtype BatchPredictionFilterVariable where
- BatchPredictionFilterVariable' { }
- pattern BatchPredictionFilterVariable_CreatedAt :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_DataSourceId :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_DataURI :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_IAMUser :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_LastUpdatedAt :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_MLModelId :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_Name :: BatchPredictionFilterVariable
- pattern BatchPredictionFilterVariable_Status :: BatchPredictionFilterVariable
- newtype DataSourceFilterVariable where
- DataSourceFilterVariable' { }
- pattern DataSourceFilterVariable_CreatedAt :: DataSourceFilterVariable
- pattern DataSourceFilterVariable_DataLocationS3 :: DataSourceFilterVariable
- pattern DataSourceFilterVariable_IAMUser :: DataSourceFilterVariable
- pattern DataSourceFilterVariable_LastUpdatedAt :: DataSourceFilterVariable
- pattern DataSourceFilterVariable_Name :: DataSourceFilterVariable
- pattern DataSourceFilterVariable_Status :: DataSourceFilterVariable
- newtype DetailsAttributes where
- newtype EntityStatus where
- EntityStatus' { }
- pattern EntityStatus_COMPLETED :: EntityStatus
- pattern EntityStatus_DELETED :: EntityStatus
- pattern EntityStatus_FAILED :: EntityStatus
- pattern EntityStatus_INPROGRESS :: EntityStatus
- pattern EntityStatus_PENDING :: EntityStatus
- newtype EvaluationFilterVariable where
- EvaluationFilterVariable' { }
- pattern EvaluationFilterVariable_CreatedAt :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_DataSourceId :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_DataURI :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_IAMUser :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_LastUpdatedAt :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_MLModelId :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_Name :: EvaluationFilterVariable
- pattern EvaluationFilterVariable_Status :: EvaluationFilterVariable
- newtype MLModelFilterVariable where
- MLModelFilterVariable' { }
- pattern MLModelFilterVariable_Algorithm :: MLModelFilterVariable
- pattern MLModelFilterVariable_CreatedAt :: MLModelFilterVariable
- pattern MLModelFilterVariable_IAMUser :: MLModelFilterVariable
- pattern MLModelFilterVariable_LastUpdatedAt :: MLModelFilterVariable
- pattern MLModelFilterVariable_MLModelType :: MLModelFilterVariable
- pattern MLModelFilterVariable_Name :: MLModelFilterVariable
- pattern MLModelFilterVariable_RealtimeEndpointStatus :: MLModelFilterVariable
- pattern MLModelFilterVariable_Status :: MLModelFilterVariable
- pattern MLModelFilterVariable_TrainingDataSourceId :: MLModelFilterVariable
- pattern MLModelFilterVariable_TrainingDataURI :: MLModelFilterVariable
- newtype MLModelType where
- MLModelType' { }
- pattern MLModelType_BINARY :: MLModelType
- pattern MLModelType_MULTICLASS :: MLModelType
- pattern MLModelType_REGRESSION :: MLModelType
- newtype RealtimeEndpointStatus where
- newtype SortOrder where
- SortOrder' { }
- pattern SortOrder_Asc :: SortOrder
- pattern SortOrder_Dsc :: SortOrder
- newtype TaggableResourceType where
- data BatchPrediction = BatchPrediction' (Maybe EntityStatus) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Text) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text)
- newBatchPrediction :: BatchPrediction
- data DataSource = DataSource' (Maybe EntityStatus) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe RDSMetadata) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Bool) (Maybe Text) (Maybe RedshiftMetadata) (Maybe Text) (Maybe Text)
- newDataSource :: DataSource
- data Evaluation = Evaluation' (Maybe EntityStatus) (Maybe PerformanceMetrics) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text)
- newEvaluation :: Evaluation
- data MLModel = MLModel' (Maybe EntityStatus) (Maybe POSIX) (Maybe (HashMap Text Text)) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Double) (Maybe POSIX) (Maybe Algorithm) (Maybe Text) (Maybe Text) (Maybe RealtimeEndpointInfo) (Maybe Text) (Maybe Text) (Maybe MLModelType)
- newMLModel :: MLModel
- data PerformanceMetrics = PerformanceMetrics' (Maybe (HashMap Text Text))
- newPerformanceMetrics :: PerformanceMetrics
- data Prediction = Prediction' (Maybe Double) (Maybe Text) (Maybe (HashMap Text Double)) (Maybe (HashMap DetailsAttributes Text))
- newPrediction :: Prediction
- data RDSDataSpec = RDSDataSpec' (Maybe Text) (Maybe Text) (Maybe Text) RDSDatabase Text RDSDatabaseCredentials Text Text Text Text [Text]
- newRDSDataSpec :: RDSDatabase -> Text -> RDSDatabaseCredentials -> Text -> Text -> Text -> Text -> RDSDataSpec
- data RDSDatabase = RDSDatabase' Text Text
- newRDSDatabase :: Text -> Text -> RDSDatabase
- data RDSDatabaseCredentials = RDSDatabaseCredentials' Text Text
- newRDSDatabaseCredentials :: Text -> Text -> RDSDatabaseCredentials
- data RDSMetadata = RDSMetadata' (Maybe Text) (Maybe Text) (Maybe RDSDatabase) (Maybe Text) (Maybe Text) (Maybe Text)
- newRDSMetadata :: RDSMetadata
- data RealtimeEndpointInfo = RealtimeEndpointInfo' (Maybe POSIX) (Maybe Text) (Maybe RealtimeEndpointStatus) (Maybe Int)
- newRealtimeEndpointInfo :: RealtimeEndpointInfo
- data RedshiftDataSpec = RedshiftDataSpec' (Maybe Text) (Maybe Text) (Maybe Text) RedshiftDatabase Text RedshiftDatabaseCredentials Text
- newRedshiftDataSpec :: RedshiftDatabase -> Text -> RedshiftDatabaseCredentials -> Text -> RedshiftDataSpec
- data RedshiftDatabase = RedshiftDatabase' Text Text
- newRedshiftDatabase :: Text -> Text -> RedshiftDatabase
- data RedshiftDatabaseCredentials = RedshiftDatabaseCredentials' Text Text
- newRedshiftDatabaseCredentials :: Text -> Text -> RedshiftDatabaseCredentials
- data RedshiftMetadata = RedshiftMetadata' (Maybe Text) (Maybe RedshiftDatabase) (Maybe Text)
- newRedshiftMetadata :: RedshiftMetadata
- data S3DataSpec = S3DataSpec' (Maybe Text) (Maybe Text) (Maybe Text) Text
- newS3DataSpec :: Text -> S3DataSpec
- data Tag = Tag' (Maybe Text) (Maybe Text)
- newTag :: Tag
Service Configuration
defaultService :: Service Source #
API version 2014-12-12
of the Amazon Machine Learning SDK configuration.
Errors
Error matchers are designed for use with the functions provided by
Control.Exception.Lens.
This allows catching (and rethrowing) service specific errors returned
by MachineLearning
.
InvalidTagException
_InvalidTagException :: AsError a => Getting (First ServiceError) a ServiceError Source #
Prism for InvalidTagException' errors.
InternalServerException
_InternalServerException :: AsError a => Getting (First ServiceError) a ServiceError Source #
An error on the server occurred when trying to process a request.
InvalidInputException
_InvalidInputException :: AsError a => Getting (First ServiceError) a ServiceError Source #
An error on the client occurred. Typically, the cause is an invalid input value.
IdempotentParameterMismatchException
_IdempotentParameterMismatchException :: AsError a => Getting (First ServiceError) a ServiceError Source #
A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.
TagLimitExceededException
_TagLimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError Source #
Prism for TagLimitExceededException' errors.
PredictorNotMountedException
_PredictorNotMountedException :: AsError a => Getting (First ServiceError) a ServiceError Source #
The exception is thrown when a predict request is made to an unmounted
MLModel
.
ResourceNotFoundException
_ResourceNotFoundException :: AsError a => Getting (First ServiceError) a ServiceError Source #
A specified resource cannot be located.
LimitExceededException
_LimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError Source #
The subscriber exceeded the maximum number of operations. This exception
can occur when listing objects such as DataSource
.
Waiters
Waiters poll by repeatedly sending a request until some remote success condition
configured by the Wait
specification is fulfilled. The Wait
specification
determines how many attempts should be made, in addition to delay and retry strategies.
MLModelAvailable
newMLModelAvailable :: Wait DescribeMLModels Source #
Polls DescribeMLModels
every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.
BatchPredictionAvailable
newBatchPredictionAvailable :: Wait DescribeBatchPredictions Source #
Polls DescribeBatchPredictions
every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.
DataSourceAvailable
newDataSourceAvailable :: Wait DescribeDataSources Source #
Polls DescribeDataSources
every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.
EvaluationAvailable
newEvaluationAvailable :: Wait DescribeEvaluations Source #
Polls DescribeEvaluations
every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.
Operations
Some AWS operations return results that are incomplete and require subsequent
requests in order to obtain the entire result set. The process of sending
subsequent requests to continue where a previous request left off is called
pagination. For example, the ListObjects
operation of Amazon S3 returns up to
1000 objects at a time, and you must send subsequent requests with the
appropriate Marker in order to retrieve the next page of results.
Operations that have an AWSPager
instance can transparently perform subsequent
requests, correctly setting Markers and other request facets to iterate through
the entire result set of a truncated API operation. Operations which support
this have an additional note in the documentation.
Many operations have the ability to filter results on the server side. See the individual operation parameters for details.
UpdateDataSource
data UpdateDataSource Source #
See: newUpdateDataSource
smart constructor.
Instances
:: Text | |
-> Text | |
-> UpdateDataSource |
Create a value of UpdateDataSource
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:UpdateDataSource'
, updateDataSource_dataSourceId
- The ID assigned to the DataSource
during creation.
$sel:dataSourceName:UpdateDataSource'
, updateDataSource_dataSourceName
- A new user-supplied name or description of the DataSource
that will
replace the current description.
data UpdateDataSourceResponse Source #
Represents the output of an UpdateDataSource
operation.
You can see the updated content by using the GetBatchPrediction
operation.
See: newUpdateDataSourceResponse
smart constructor.
Instances
newUpdateDataSourceResponse Source #
Create a value of UpdateDataSourceResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:UpdateDataSource'
, updateDataSourceResponse_dataSourceId
- The ID assigned to the DataSource
during creation. This value should
be identical to the value of the DataSourceID
in the request.
$sel:httpStatus:UpdateDataSourceResponse'
, updateDataSourceResponse_httpStatus
- The response's http status code.
DeleteDataSource
data DeleteDataSource Source #
See: newDeleteDataSource
smart constructor.
Instances
Create a value of DeleteDataSource
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:DeleteDataSource'
, deleteDataSource_dataSourceId
- A user-supplied ID that uniquely identifies the DataSource
.
data DeleteDataSourceResponse Source #
Represents the output of a DeleteDataSource
operation.
See: newDeleteDataSourceResponse
smart constructor.
Instances
newDeleteDataSourceResponse Source #
Create a value of DeleteDataSourceResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:DeleteDataSource'
, deleteDataSourceResponse_dataSourceId
- A user-supplied ID that uniquely identifies the DataSource
. This value
should be identical to the value of the DataSourceID
in the request.
$sel:httpStatus:DeleteDataSourceResponse'
, deleteDataSourceResponse_httpStatus
- The response's http status code.
DescribeTags
data DescribeTags Source #
See: newDescribeTags
smart constructor.
Instances
:: Text | |
-> TaggableResourceType | |
-> DescribeTags |
Create a value of DescribeTags
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:resourceId:DescribeTags'
, describeTags_resourceId
- The ID of the ML object. For example, exampleModelId
.
$sel:resourceType:DescribeTags'
, describeTags_resourceType
- The type of the ML object.
data DescribeTagsResponse Source #
Amazon ML returns the following elements.
See: newDescribeTagsResponse
smart constructor.
Instances
newDescribeTagsResponse Source #
Create a value of DescribeTagsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:resourceId:DescribeTags'
, describeTagsResponse_resourceId
- The ID of the tagged ML object.
$sel:resourceType:DescribeTags'
, describeTagsResponse_resourceType
- The type of the tagged ML object.
$sel:tags:DescribeTagsResponse'
, describeTagsResponse_tags
- A list of tags associated with the ML object.
$sel:httpStatus:DescribeTagsResponse'
, describeTagsResponse_httpStatus
- The response's http status code.
CreateDataSourceFromRedshift
data CreateDataSourceFromRedshift Source #
See: newCreateDataSourceFromRedshift
smart constructor.
Instances
newCreateDataSourceFromRedshift Source #
Create a value of CreateDataSourceFromRedshift
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceName:CreateDataSourceFromRedshift'
, createDataSourceFromRedshift_dataSourceName
- A user-supplied name or description of the DataSource
.
$sel:computeStatistics:CreateDataSourceFromRedshift'
, createDataSourceFromRedshift_computeStatistics
- The compute statistics for a DataSource
. The statistics are generated
from the observation data referenced by a DataSource
. Amazon ML uses
the statistics internally during MLModel
training. This parameter must
be set to true
if the DataSource
needs to be used for MLModel
training.
$sel:dataSourceId:CreateDataSourceFromRedshift'
, createDataSourceFromRedshift_dataSourceId
- A user-supplied ID that uniquely identifies the DataSource
.
$sel:dataSpec:CreateDataSourceFromRedshift'
, createDataSourceFromRedshift_dataSpec
- The data specification of an Amazon Redshift DataSource
:
DatabaseInformation -
DatabaseName
- The name of the Amazon Redshift database.ClusterIdentifier
- The unique ID for the Amazon Redshift cluster.
- DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
- SelectSqlQuery - The query that is used to retrieve the observation
data for the
Datasource
. - S3StagingLocation - The Amazon Simple Storage Service (Amazon S3)
location for staging Amazon Redshift data. The data retrieved from
Amazon Redshift using the
SelectSqlQuery
query is stored in this location. - DataSchemaUri - The Amazon S3 location of the
DataSchema
. - DataSchema - A JSON string representing the schema. This is not
required if
DataSchemaUri
is specified. DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
DataSource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
$sel:roleARN:CreateDataSourceFromRedshift'
, createDataSourceFromRedshift_roleARN
- A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the
role on behalf of the user to create the following:
- A security group to allow Amazon ML to execute the
SelectSqlQuery
query on an Amazon Redshift cluster - An Amazon S3 bucket policy to grant Amazon ML read/write
permissions on the
S3StagingLocation
data CreateDataSourceFromRedshiftResponse Source #
Represents the output of a CreateDataSourceFromRedshift
operation, and
is an acknowledgement that Amazon ML received the request.
The CreateDataSourceFromRedshift
operation is asynchronous. You can
poll for updates by using the GetBatchPrediction
operation and
checking the Status
parameter.
See: newCreateDataSourceFromRedshiftResponse
smart constructor.
Instances
newCreateDataSourceFromRedshiftResponse Source #
Create a value of CreateDataSourceFromRedshiftResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:CreateDataSourceFromRedshift'
, createDataSourceFromRedshiftResponse_dataSourceId
- A user-supplied ID that uniquely identifies the datasource. This value
should be identical to the value of the DataSourceID
in the request.
$sel:httpStatus:CreateDataSourceFromRedshiftResponse'
, createDataSourceFromRedshiftResponse_httpStatus
- The response's http status code.
CreateDataSourceFromS3
data CreateDataSourceFromS3 Source #
See: newCreateDataSourceFromS3
smart constructor.
Instances
newCreateDataSourceFromS3 Source #
:: Text | |
-> S3DataSpec | |
-> CreateDataSourceFromS3 |
Create a value of CreateDataSourceFromS3
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceName:CreateDataSourceFromS3'
, createDataSourceFromS3_dataSourceName
- A user-supplied name or description of the DataSource
.
$sel:computeStatistics:CreateDataSourceFromS3'
, createDataSourceFromS3_computeStatistics
- The compute statistics for a DataSource
. The statistics are generated
from the observation data referenced by a DataSource
. Amazon ML uses
the statistics internally during MLModel
training. This parameter must
be set to true
if the @DataSource
needs to be used for
MLModel@
training.
$sel:dataSourceId:CreateDataSourceFromS3'
, createDataSourceFromS3_dataSourceId
- A user-supplied identifier that uniquely identifies the DataSource
.
$sel:dataSpec:CreateDataSourceFromS3'
, createDataSourceFromS3_dataSpec
- The data specification of a DataSource
:
- DataLocationS3 - The Amazon S3 location of the observation data.
- DataSchemaLocationS3 - The Amazon S3 location of the
DataSchema
. - DataSchema - A JSON string representing the schema. This is not
required if
DataSchemaUri
is specified. DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
data CreateDataSourceFromS3Response Source #
Represents the output of a CreateDataSourceFromS3
operation, and is an
acknowledgement that Amazon ML received the request.
The CreateDataSourceFromS3
operation is asynchronous. You can poll for
updates by using the GetBatchPrediction
operation and checking the
Status
parameter.
See: newCreateDataSourceFromS3Response
smart constructor.
Instances
Eq CreateDataSourceFromS3Response Source # | |
Read CreateDataSourceFromS3Response Source # | |
Show CreateDataSourceFromS3Response Source # | |
Generic CreateDataSourceFromS3Response Source # | |
NFData CreateDataSourceFromS3Response Source # | |
Defined in Amazonka.MachineLearning.CreateDataSourceFromS3 rnf :: CreateDataSourceFromS3Response -> () # | |
type Rep CreateDataSourceFromS3Response Source # | |
Defined in Amazonka.MachineLearning.CreateDataSourceFromS3 type Rep CreateDataSourceFromS3Response = D1 ('MetaData "CreateDataSourceFromS3Response" "Amazonka.MachineLearning.CreateDataSourceFromS3" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromS3Response'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))) |
newCreateDataSourceFromS3Response Source #
Create a value of CreateDataSourceFromS3Response
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:CreateDataSourceFromS3'
, createDataSourceFromS3Response_dataSourceId
- A user-supplied ID that uniquely identifies the DataSource
. This value
should be identical to the value of the DataSourceID
in the request.
$sel:httpStatus:CreateDataSourceFromS3Response'
, createDataSourceFromS3Response_httpStatus
- The response's http status code.
CreateMLModel
data CreateMLModel Source #
See: newCreateMLModel
smart constructor.
CreateMLModel' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe (HashMap Text Text)) Text MLModelType Text |
Instances
:: Text | |
-> MLModelType | |
-> Text | |
-> CreateMLModel |
Create a value of CreateMLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:recipe:CreateMLModel'
, createMLModel_recipe
- The data recipe for creating the MLModel
. You must specify either the
recipe or its URI. If you don't specify a recipe or its URI, Amazon ML
creates a default.
$sel:recipeUri:CreateMLModel'
, createMLModel_recipeUri
- The Amazon Simple Storage Service (Amazon S3) location and file name
that contains the MLModel
recipe. You must specify either the recipe
or its URI. If you don't specify a recipe or its URI, Amazon ML creates
a default.
$sel:mLModelName:CreateMLModel'
, createMLModel_mLModelName
- A user-supplied name or description of the MLModel
.
$sel:parameters:CreateMLModel'
, createMLModel_parameters
- A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
$sel:mLModelId:CreateMLModel'
, createMLModel_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
.
$sel:mLModelType:CreateMLModel'
, createMLModel_mLModelType
- The category of supervised learning that this MLModel
will address.
Choose from the following types:
- Choose
REGRESSION
if theMLModel
will be used to predict a numeric value. - Choose
BINARY
if theMLModel
result has two possible values. - Choose
MULTICLASS
if theMLModel
result has a limited number of values.
For more information, see the Amazon Machine Learning Developer Guide.
$sel:trainingDataSourceId:CreateMLModel'
, createMLModel_trainingDataSourceId
- The DataSource
that points to the training data.
data CreateMLModelResponse Source #
Represents the output of a CreateMLModel
operation, and is an
acknowledgement that Amazon ML received the request.
The CreateMLModel
operation is asynchronous. You can poll for status
updates by using the GetMLModel
operation and checking the Status
parameter.
See: newCreateMLModelResponse
smart constructor.
Instances
newCreateMLModelResponse Source #
Create a value of CreateMLModelResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:CreateMLModel'
, createMLModelResponse_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelId
in the request.
$sel:httpStatus:CreateMLModelResponse'
, createMLModelResponse_httpStatus
- The response's http status code.
DeleteTags
data DeleteTags Source #
See: newDeleteTags
smart constructor.
Instances
Create a value of DeleteTags
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:tagKeys:DeleteTags'
, deleteTags_tagKeys
- One or more tags to delete.
$sel:resourceId:DeleteTags'
, deleteTags_resourceId
- The ID of the tagged ML object. For example, exampleModelId
.
$sel:resourceType:DeleteTags'
, deleteTags_resourceType
- The type of the tagged ML object.
data DeleteTagsResponse Source #
Amazon ML returns the following elements.
See: newDeleteTagsResponse
smart constructor.
Instances
newDeleteTagsResponse Source #
Create a value of DeleteTagsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:resourceId:DeleteTags'
, deleteTagsResponse_resourceId
- The ID of the ML object from which tags were deleted.
$sel:resourceType:DeleteTags'
, deleteTagsResponse_resourceType
- The type of the ML object from which tags were deleted.
$sel:httpStatus:DeleteTagsResponse'
, deleteTagsResponse_httpStatus
- The response's http status code.
DeleteBatchPrediction
data DeleteBatchPrediction Source #
See: newDeleteBatchPrediction
smart constructor.
Instances
newDeleteBatchPrediction Source #
Create a value of DeleteBatchPrediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:DeleteBatchPrediction'
, deleteBatchPrediction_batchPredictionId
- A user-supplied ID that uniquely identifies the BatchPrediction
.
data DeleteBatchPredictionResponse Source #
Represents the output of a DeleteBatchPrediction
operation.
You can use the GetBatchPrediction
operation and check the value of
the Status
parameter to see whether a BatchPrediction
is marked as
DELETED
.
See: newDeleteBatchPredictionResponse
smart constructor.
Instances
newDeleteBatchPredictionResponse Source #
Create a value of DeleteBatchPredictionResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:DeleteBatchPrediction'
, deleteBatchPredictionResponse_batchPredictionId
- A user-supplied ID that uniquely identifies the BatchPrediction
. This
value should be identical to the value of the BatchPredictionID
in the
request.
$sel:httpStatus:DeleteBatchPredictionResponse'
, deleteBatchPredictionResponse_httpStatus
- The response's http status code.
UpdateBatchPrediction
data UpdateBatchPrediction Source #
See: newUpdateBatchPrediction
smart constructor.
Instances
newUpdateBatchPrediction Source #
:: Text | |
-> Text | |
-> UpdateBatchPrediction |
Create a value of UpdateBatchPrediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:UpdateBatchPrediction'
, updateBatchPrediction_batchPredictionId
- The ID assigned to the BatchPrediction
during creation.
$sel:batchPredictionName:UpdateBatchPrediction'
, updateBatchPrediction_batchPredictionName
- A new user-supplied name or description of the BatchPrediction
.
data UpdateBatchPredictionResponse Source #
Represents the output of an UpdateBatchPrediction
operation.
You can see the updated content by using the GetBatchPrediction
operation.
See: newUpdateBatchPredictionResponse
smart constructor.
Instances
newUpdateBatchPredictionResponse Source #
Create a value of UpdateBatchPredictionResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:UpdateBatchPrediction'
, updateBatchPredictionResponse_batchPredictionId
- The ID assigned to the BatchPrediction
during creation. This value
should be identical to the value of the BatchPredictionId
in the
request.
$sel:httpStatus:UpdateBatchPredictionResponse'
, updateBatchPredictionResponse_httpStatus
- The response's http status code.
GetMLModel
data GetMLModel Source #
See: newGetMLModel
smart constructor.
Instances
Create a value of GetMLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:verbose:GetMLModel'
, getMLModel_verbose
- Specifies whether the GetMLModel
operation should return Recipe
.
If true, Recipe
is returned.
If false, Recipe
is not returned.
$sel:mLModelId:GetMLModel'
, getMLModel_mLModelId
- The ID assigned to the MLModel
at creation.
data GetMLModelResponse Source #
Represents the output of a GetMLModel
operation, and provides detailed
information about a MLModel
.
See: newGetMLModelResponse
smart constructor.
GetMLModelResponse' (Maybe EntityStatus) (Maybe POSIX) (Maybe (HashMap Text Text)) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe Text) (Maybe POSIX) (Maybe Double) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe RealtimeEndpointInfo) (Maybe Text) (Maybe Text) (Maybe MLModelType) Int |
Instances
newGetMLModelResponse Source #
Create a value of GetMLModelResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:GetMLModelResponse'
, getMLModelResponse_status
- The current status of the MLModel
. This element can have one of the
following values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to describe aMLModel
.INPROGRESS
- The request is processing.FAILED
- The request did not run to completion. The ML model isn't usable.COMPLETED
- The request completed successfully.DELETED
- TheMLModel
is marked as deleted. It isn't usable.
$sel:lastUpdatedAt:GetMLModelResponse'
, getMLModelResponse_lastUpdatedAt
- The time of the most recent edit to the MLModel
. The time is expressed
in epoch time.
$sel:trainingParameters:GetMLModelResponse'
, getMLModelResponse_trainingParameters
- A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
$sel:scoreThresholdLastUpdatedAt:GetMLModelResponse'
, getMLModelResponse_scoreThresholdLastUpdatedAt
- The time of the most recent edit to the ScoreThreshold
. The time is
expressed in epoch time.
$sel:createdAt:GetMLModelResponse'
, getMLModelResponse_createdAt
- The time that the MLModel
was created. The time is expressed in epoch
time.
$sel:computeTime:GetMLModelResponse'
, getMLModelResponse_computeTime
- The approximate CPU time in milliseconds that Amazon Machine Learning
spent processing the MLModel
, normalized and scaled on computation
resources. ComputeTime
is only available if the MLModel
is in the
COMPLETED
state.
$sel:recipe:GetMLModelResponse'
, getMLModelResponse_recipe
- The recipe to use when training the MLModel
. The Recipe
provides
detailed information about the observation data to use during training,
and manipulations to perform on the observation data during training.
Note: This parameter is provided as part of the verbose format.
$sel:inputDataLocationS3:GetMLModelResponse'
, getMLModelResponse_inputDataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:mLModelId:GetMLModel'
, getMLModelResponse_mLModelId
- The MLModel ID, which is same as the MLModelId
in the request.
$sel:sizeInBytes:GetMLModelResponse'
, getMLModelResponse_sizeInBytes
- Undocumented member.
$sel:schema:GetMLModelResponse'
, getMLModelResponse_schema
- The schema used by all of the data files referenced by the DataSource
.
Note: This parameter is provided as part of the verbose format.
$sel:startedAt:GetMLModelResponse'
, getMLModelResponse_startedAt
- The epoch time when Amazon Machine Learning marked the MLModel
as
INPROGRESS
. StartedAt
isn't available if the MLModel
is in the
PENDING
state.
$sel:scoreThreshold:GetMLModelResponse'
, getMLModelResponse_scoreThreshold
- The scoring threshold is used in binary classification MLModel
models.
It marks the boundary between a positive prediction and a negative
prediction.
Output values greater than or equal to the threshold receive a positive
result from the MLModel, such as true
. Output values less than the
threshold receive a negative response from the MLModel, such as false
.
$sel:finishedAt:GetMLModelResponse'
, getMLModelResponse_finishedAt
- The epoch time when Amazon Machine Learning marked the MLModel
as
COMPLETED
or FAILED
. FinishedAt
is only available when the
MLModel
is in the COMPLETED
or FAILED
state.
$sel:createdByIamUser:GetMLModelResponse'
, getMLModelResponse_createdByIamUser
- The AWS user account from which the MLModel
was created. The account
type can be either an AWS root account or an AWS Identity and Access
Management (IAM) user account.
$sel:name:GetMLModelResponse'
, getMLModelResponse_name
- A user-supplied name or description of the MLModel
.
$sel:logUri:GetMLModelResponse'
, getMLModelResponse_logUri
- A link to the file that contains logs of the CreateMLModel
operation.
$sel:endpointInfo:GetMLModelResponse'
, getMLModelResponse_endpointInfo
- The current endpoint of the MLModel
$sel:trainingDataSourceId:GetMLModelResponse'
, getMLModelResponse_trainingDataSourceId
- The ID of the training DataSource
.
$sel:message:GetMLModelResponse'
, getMLModelResponse_message
- A description of the most recent details about accessing the MLModel
.
$sel:mLModelType:GetMLModelResponse'
, getMLModelResponse_mLModelType
- Identifies the MLModel
category. The following are the available
types:
- REGRESSION -- Produces a numeric result. For example, "What price should a house be listed at?"
- BINARY -- Produces one of two possible results. For example, "Is this an e-commerce website?"
- MULTICLASS -- Produces one of several possible results. For example, "Is this a HIGH, LOW or MEDIUM risk trade?"
$sel:httpStatus:GetMLModelResponse'
, getMLModelResponse_httpStatus
- The response's http status code.
GetDataSource
data GetDataSource Source #
See: newGetDataSource
smart constructor.
Instances
Create a value of GetDataSource
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:verbose:GetDataSource'
, getDataSource_verbose
- Specifies whether the GetDataSource
operation should return
DataSourceSchema
.
If true, DataSourceSchema
is returned.
If false, DataSourceSchema
is not returned.
$sel:dataSourceId:GetDataSource'
, getDataSource_dataSourceId
- The ID assigned to the DataSource
at creation.
data GetDataSourceResponse Source #
Represents the output of a GetDataSource
operation and describes a
DataSource
.
See: newGetDataSourceResponse
smart constructor.
GetDataSourceResponse' (Maybe EntityStatus) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe RDSMetadata) (Maybe Integer) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Bool) (Maybe Text) (Maybe RedshiftMetadata) (Maybe Text) (Maybe Text) Int |
Instances
newGetDataSourceResponse Source #
Create a value of GetDataSourceResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:GetDataSourceResponse'
, getDataSourceResponse_status
- The current status of the DataSource
. This element can have one of the
following values:
PENDING
- Amazon ML submitted a request to create aDataSource
.INPROGRESS
- The creation process is underway.FAILED
- The request to create aDataSource
did not run to completion. It is not usable.COMPLETED
- The creation process completed successfully.DELETED
- TheDataSource
is marked as deleted. It is not usable.
$sel:numberOfFiles:GetDataSourceResponse'
, getDataSourceResponse_numberOfFiles
- The number of data files referenced by the DataSource
.
$sel:lastUpdatedAt:GetDataSourceResponse'
, getDataSourceResponse_lastUpdatedAt
- The time of the most recent edit to the DataSource
. The time is
expressed in epoch time.
$sel:createdAt:GetDataSourceResponse'
, getDataSourceResponse_createdAt
- The time that the DataSource
was created. The time is expressed in
epoch time.
$sel:computeTime:GetDataSourceResponse'
, getDataSourceResponse_computeTime
- The approximate CPU time in milliseconds that Amazon Machine Learning
spent processing the DataSource
, normalized and scaled on computation
resources. ComputeTime
is only available if the DataSource
is in the
COMPLETED
state and the ComputeStatistics
is set to true.
$sel:dataSourceId:GetDataSource'
, getDataSourceResponse_dataSourceId
- The ID assigned to the DataSource
at creation. This value should be
identical to the value of the DataSourceId
in the request.
$sel:rDSMetadata:GetDataSourceResponse'
, getDataSourceResponse_rDSMetadata
- Undocumented member.
$sel:dataSizeInBytes:GetDataSourceResponse'
, getDataSourceResponse_dataSizeInBytes
- The total size of observations in the data files.
$sel:dataSourceSchema:GetDataSourceResponse'
, getDataSourceResponse_dataSourceSchema
- The schema used by all of the data files of this DataSource
.
Note: This parameter is provided as part of the verbose format.
$sel:startedAt:GetDataSourceResponse'
, getDataSourceResponse_startedAt
- The epoch time when Amazon Machine Learning marked the DataSource
as
INPROGRESS
. StartedAt
isn't available if the DataSource
is in the
PENDING
state.
$sel:finishedAt:GetDataSourceResponse'
, getDataSourceResponse_finishedAt
- The epoch time when Amazon Machine Learning marked the DataSource
as
COMPLETED
or FAILED
. FinishedAt
is only available when the
DataSource
is in the COMPLETED
or FAILED
state.
$sel:createdByIamUser:GetDataSourceResponse'
, getDataSourceResponse_createdByIamUser
- The AWS user account from which the DataSource
was created. The
account type can be either an AWS root account or an AWS Identity and
Access Management (IAM) user account.
$sel:name:GetDataSourceResponse'
, getDataSourceResponse_name
- A user-supplied name or description of the DataSource
.
$sel:logUri:GetDataSourceResponse'
, getDataSourceResponse_logUri
- A link to the file containing logs of CreateDataSourceFrom*
operations.
$sel:dataLocationS3:GetDataSourceResponse'
, getDataSourceResponse_dataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:computeStatistics:GetDataSourceResponse'
, getDataSourceResponse_computeStatistics
- The parameter is true
if statistics need to be generated from the
observation data.
$sel:message:GetDataSourceResponse'
, getDataSourceResponse_message
- The user-supplied description of the most recent details about creating
the DataSource
.
$sel:redshiftMetadata:GetDataSourceResponse'
, getDataSourceResponse_redshiftMetadata
- Undocumented member.
$sel:dataRearrangement:GetDataSourceResponse'
, getDataSourceResponse_dataRearrangement
- A JSON string that represents the splitting and rearrangement
requirement used when this DataSource
was created.
$sel:roleARN:GetDataSourceResponse'
, getDataSourceResponse_roleARN
- Undocumented member.
$sel:httpStatus:GetDataSourceResponse'
, getDataSourceResponse_httpStatus
- The response's http status code.
UpdateEvaluation
data UpdateEvaluation Source #
See: newUpdateEvaluation
smart constructor.
Instances
:: Text | |
-> Text | |
-> UpdateEvaluation |
Create a value of UpdateEvaluation
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:UpdateEvaluation'
, updateEvaluation_evaluationId
- The ID assigned to the Evaluation
during creation.
$sel:evaluationName:UpdateEvaluation'
, updateEvaluation_evaluationName
- A new user-supplied name or description of the Evaluation
that will
replace the current content.
data UpdateEvaluationResponse Source #
Represents the output of an UpdateEvaluation
operation.
You can see the updated content by using the GetEvaluation
operation.
See: newUpdateEvaluationResponse
smart constructor.
Instances
newUpdateEvaluationResponse Source #
Create a value of UpdateEvaluationResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:UpdateEvaluation'
, updateEvaluationResponse_evaluationId
- The ID assigned to the Evaluation
during creation. This value should
be identical to the value of the Evaluation
in the request.
$sel:httpStatus:UpdateEvaluationResponse'
, updateEvaluationResponse_httpStatus
- The response's http status code.
DeleteEvaluation
data DeleteEvaluation Source #
See: newDeleteEvaluation
smart constructor.
Instances
Create a value of DeleteEvaluation
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:DeleteEvaluation'
, deleteEvaluation_evaluationId
- A user-supplied ID that uniquely identifies the Evaluation
to delete.
data DeleteEvaluationResponse Source #
Represents the output of a DeleteEvaluation
operation. The output
indicates that Amazon Machine Learning (Amazon ML) received the request.
You can use the GetEvaluation
operation and check the value of the
Status
parameter to see whether an Evaluation
is marked as
DELETED
.
See: newDeleteEvaluationResponse
smart constructor.
Instances
newDeleteEvaluationResponse Source #
Create a value of DeleteEvaluationResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:DeleteEvaluation'
, deleteEvaluationResponse_evaluationId
- A user-supplied ID that uniquely identifies the Evaluation
. This value
should be identical to the value of the EvaluationId
in the request.
$sel:httpStatus:DeleteEvaluationResponse'
, deleteEvaluationResponse_httpStatus
- The response's http status code.
DeleteMLModel
data DeleteMLModel Source #
See: newDeleteMLModel
smart constructor.
Instances
Create a value of DeleteMLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:DeleteMLModel'
, deleteMLModel_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
.
data DeleteMLModelResponse Source #
Represents the output of a DeleteMLModel
operation.
You can use the GetMLModel
operation and check the value of the
Status
parameter to see whether an MLModel
is marked as DELETED
.
See: newDeleteMLModelResponse
smart constructor.
Instances
newDeleteMLModelResponse Source #
Create a value of DeleteMLModelResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:DeleteMLModel'
, deleteMLModelResponse_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelID
in the request.
$sel:httpStatus:DeleteMLModelResponse'
, deleteMLModelResponse_httpStatus
- The response's http status code.
UpdateMLModel
data UpdateMLModel Source #
See: newUpdateMLModel
smart constructor.
Instances
Create a value of UpdateMLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelName:UpdateMLModel'
, updateMLModel_mLModelName
- A user-supplied name or description of the MLModel
.
$sel:scoreThreshold:UpdateMLModel'
, updateMLModel_scoreThreshold
- The ScoreThreshold
used in binary classification MLModel
that marks
the boundary between a positive prediction and a negative prediction.
Output values greater than or equal to the ScoreThreshold
receive a
positive result from the MLModel
, such as true
. Output values less
than the ScoreThreshold
receive a negative response from the
MLModel
, such as false
.
$sel:mLModelId:UpdateMLModel'
, updateMLModel_mLModelId
- The ID assigned to the MLModel
during creation.
data UpdateMLModelResponse Source #
Represents the output of an UpdateMLModel
operation.
You can see the updated content by using the GetMLModel
operation.
See: newUpdateMLModelResponse
smart constructor.
Instances
newUpdateMLModelResponse Source #
Create a value of UpdateMLModelResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:UpdateMLModel'
, updateMLModelResponse_mLModelId
- The ID assigned to the MLModel
during creation. This value should be
identical to the value of the MLModelID
in the request.
$sel:httpStatus:UpdateMLModelResponse'
, updateMLModelResponse_httpStatus
- The response's http status code.
GetBatchPrediction
data GetBatchPrediction Source #
See: newGetBatchPrediction
smart constructor.
Instances
newGetBatchPrediction Source #
Create a value of GetBatchPrediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:GetBatchPrediction'
, getBatchPrediction_batchPredictionId
- An ID assigned to the BatchPrediction
at creation.
data GetBatchPredictionResponse Source #
Represents the output of a GetBatchPrediction
operation and describes
a BatchPrediction
.
See: newGetBatchPredictionResponse
smart constructor.
GetBatchPredictionResponse' (Maybe EntityStatus) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Text) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) Int |
Instances
newGetBatchPredictionResponse Source #
Create a value of GetBatchPredictionResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:GetBatchPredictionResponse'
, getBatchPredictionResponse_status
- The status of the BatchPrediction
, which can be one of the following
values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to generate batch predictions.INPROGRESS
- The batch predictions are in progress.FAILED
- The request to perform a batch prediction did not run to completion. It is not usable.COMPLETED
- The batch prediction process completed successfully.DELETED
- TheBatchPrediction
is marked as deleted. It is not usable.
$sel:lastUpdatedAt:GetBatchPredictionResponse'
, getBatchPredictionResponse_lastUpdatedAt
- The time of the most recent edit to BatchPrediction
. The time is
expressed in epoch time.
$sel:createdAt:GetBatchPredictionResponse'
, getBatchPredictionResponse_createdAt
- The time when the BatchPrediction
was created. The time is expressed
in epoch time.
$sel:computeTime:GetBatchPredictionResponse'
, getBatchPredictionResponse_computeTime
- The approximate CPU time in milliseconds that Amazon Machine Learning
spent processing the BatchPrediction
, normalized and scaled on
computation resources. ComputeTime
is only available if the
BatchPrediction
is in the COMPLETED
state.
$sel:inputDataLocationS3:GetBatchPredictionResponse'
, getBatchPredictionResponse_inputDataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:mLModelId:GetBatchPredictionResponse'
, getBatchPredictionResponse_mLModelId
- The ID of the MLModel
that generated predictions for the
BatchPrediction
request.
$sel:batchPredictionDataSourceId:GetBatchPredictionResponse'
, getBatchPredictionResponse_batchPredictionDataSourceId
- The ID of the DataSource
that was used to create the
BatchPrediction
.
$sel:totalRecordCount:GetBatchPredictionResponse'
, getBatchPredictionResponse_totalRecordCount
- The number of total records that Amazon Machine Learning saw while
processing the BatchPrediction
.
$sel:startedAt:GetBatchPredictionResponse'
, getBatchPredictionResponse_startedAt
- The epoch time when Amazon Machine Learning marked the BatchPrediction
as INPROGRESS
. StartedAt
isn't available if the BatchPrediction
is in the PENDING
state.
$sel:batchPredictionId:GetBatchPrediction'
, getBatchPredictionResponse_batchPredictionId
- An ID assigned to the BatchPrediction
at creation. This value should
be identical to the value of the BatchPredictionID
in the request.
$sel:finishedAt:GetBatchPredictionResponse'
, getBatchPredictionResponse_finishedAt
- The epoch time when Amazon Machine Learning marked the BatchPrediction
as COMPLETED
or FAILED
. FinishedAt
is only available when the
BatchPrediction
is in the COMPLETED
or FAILED
state.
$sel:invalidRecordCount:GetBatchPredictionResponse'
, getBatchPredictionResponse_invalidRecordCount
- The number of invalid records that Amazon Machine Learning saw while
processing the BatchPrediction
.
$sel:createdByIamUser:GetBatchPredictionResponse'
, getBatchPredictionResponse_createdByIamUser
- The AWS user account that invoked the BatchPrediction
. The account
type can be either an AWS root account or an AWS Identity and Access
Management (IAM) user account.
$sel:name:GetBatchPredictionResponse'
, getBatchPredictionResponse_name
- A user-supplied name or description of the BatchPrediction
.
$sel:logUri:GetBatchPredictionResponse'
, getBatchPredictionResponse_logUri
- A link to the file that contains logs of the CreateBatchPrediction
operation.
$sel:message:GetBatchPredictionResponse'
, getBatchPredictionResponse_message
- A description of the most recent details about processing the batch
prediction request.
$sel:outputUri:GetBatchPredictionResponse'
, getBatchPredictionResponse_outputUri
- The location of an Amazon S3 bucket or directory to receive the
operation results.
$sel:httpStatus:GetBatchPredictionResponse'
, getBatchPredictionResponse_httpStatus
- The response's http status code.
DescribeBatchPredictions (Paginated)
data DescribeBatchPredictions Source #
See: newDescribeBatchPredictions
smart constructor.
DescribeBatchPredictions' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe BatchPredictionFilterVariable) (Maybe Text) |
Instances
newDescribeBatchPredictions :: DescribeBatchPredictions Source #
Create a value of DescribeBatchPredictions
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:eq:DescribeBatchPredictions'
, describeBatchPredictions_eq
- The equal to operator. The BatchPrediction
results will have
FilterVariable
values that exactly match the value specified with
EQ
.
$sel:ge:DescribeBatchPredictions'
, describeBatchPredictions_ge
- The greater than or equal to operator. The BatchPrediction
results
will have FilterVariable
values that are greater than or equal to the
value specified with GE
.
$sel:prefix:DescribeBatchPredictions'
, describeBatchPredictions_prefix
- A string that is found at the beginning of a variable, such as Name
or
Id
.
For example, a Batch Prediction
operation could have the Name
2014-09-09-HolidayGiftMailer
. To search for this BatchPrediction
,
select Name
for the FilterVariable
and any of the following strings
for the Prefix
:
- 2014-09
- 2014-09-09
- 2014-09-09-Holiday
$sel:gt:DescribeBatchPredictions'
, describeBatchPredictions_gt
- The greater than operator. The BatchPrediction
results will have
FilterVariable
values that are greater than the value specified with
GT
.
$sel:ne:DescribeBatchPredictions'
, describeBatchPredictions_ne
- The not equal to operator. The BatchPrediction
results will have
FilterVariable
values not equal to the value specified with NE
.
$sel:nextToken:DescribeBatchPredictions'
, describeBatchPredictions_nextToken
- An ID of the page in the paginated results.
$sel:sortOrder:DescribeBatchPredictions'
, describeBatchPredictions_sortOrder
- A two-value parameter that determines the sequence of the resulting list
of MLModel
s.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
$sel:limit:DescribeBatchPredictions'
, describeBatchPredictions_limit
- The number of pages of information to include in the result. The range
of acceptable values is 1
through 100
. The default value is 100
.
$sel:lt:DescribeBatchPredictions'
, describeBatchPredictions_lt
- The less than operator. The BatchPrediction
results will have
FilterVariable
values that are less than the value specified with
LT
.
$sel:filterVariable:DescribeBatchPredictions'
, describeBatchPredictions_filterVariable
- Use one of the following variables to filter a list of
BatchPrediction
:
CreatedAt
- Sets the search criteria to theBatchPrediction
creation date.Status
- Sets the search criteria to theBatchPrediction
status.Name
- Sets the search criteria to the contents of theBatchPrediction
____Name
.IAMUser
- Sets the search criteria to the user account that invoked theBatchPrediction
creation.MLModelId
- Sets the search criteria to theMLModel
used in theBatchPrediction
.DataSourceId
- Sets the search criteria to theDataSource
used in theBatchPrediction
.DataURI
- Sets the search criteria to the data file(s) used in theBatchPrediction
. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
$sel:le:DescribeBatchPredictions'
, describeBatchPredictions_le
- The less than or equal to operator. The BatchPrediction
results will
have FilterVariable
values that are less than or equal to the value
specified with LE
.
data DescribeBatchPredictionsResponse Source #
Represents the output of a DescribeBatchPredictions
operation. The
content is essentially a list of BatchPrediction
s.
See: newDescribeBatchPredictionsResponse
smart constructor.
Instances
newDescribeBatchPredictionsResponse Source #
Create a value of DescribeBatchPredictionsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:results:DescribeBatchPredictionsResponse'
, describeBatchPredictionsResponse_results
- A list of BatchPrediction
objects that meet the search criteria.
$sel:nextToken:DescribeBatchPredictions'
, describeBatchPredictionsResponse_nextToken
- The ID of the next page in the paginated results that indicates at least
one more page follows.
$sel:httpStatus:DescribeBatchPredictionsResponse'
, describeBatchPredictionsResponse_httpStatus
- The response's http status code.
CreateDataSourceFromRDS
data CreateDataSourceFromRDS Source #
See: newCreateDataSourceFromRDS
smart constructor.
Instances
newCreateDataSourceFromRDS Source #
:: Text | |
-> RDSDataSpec | |
-> Text | |
-> CreateDataSourceFromRDS |
Create a value of CreateDataSourceFromRDS
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceName:CreateDataSourceFromRDS'
, createDataSourceFromRDS_dataSourceName
- A user-supplied name or description of the DataSource
.
$sel:computeStatistics:CreateDataSourceFromRDS'
, createDataSourceFromRDS_computeStatistics
- The compute statistics for a DataSource
. The statistics are generated
from the observation data referenced by a DataSource
. Amazon ML uses
the statistics internally during MLModel
training. This parameter must
be set to true
if the @DataSource
needs to be used for
MLModel@
training.
$sel:dataSourceId:CreateDataSourceFromRDS'
, createDataSourceFromRDS_dataSourceId
- A user-supplied ID that uniquely identifies the DataSource
. Typically,
an Amazon Resource Number (ARN) becomes the ID for a DataSource
.
$sel:rDSData:CreateDataSourceFromRDS'
, createDataSourceFromRDS_rDSData
- The data specification of an Amazon RDS DataSource
:
DatabaseInformation -
DatabaseName
- The name of the Amazon RDS database.InstanceIdentifier
- A unique identifier for the Amazon RDS database instance.
- DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database.
- ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see Role templates for data pipelines.
- ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
- SecurityInfo - The security information to use to access an RDS DB
instance. You need to set up appropriate ingress rules for the
security entity IDs provided to allow access to the Amazon RDS
instance. Specify a [
SubnetId
,SecurityGroupIds
] pair for a VPC-based RDS DB instance. - SelectSqlQuery - A query that is used to retrieve the observation
data for the
Datasource
. - S3StagingLocation - The Amazon S3 location for staging Amazon RDS
data. The data retrieved from Amazon RDS using
SelectSqlQuery
is stored in this location. - DataSchemaUri - The Amazon S3 location of the
DataSchema
. - DataSchema - A JSON string representing the schema. This is not
required if
DataSchemaUri
is specified. DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
Datasource
.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
$sel:roleARN:CreateDataSourceFromRDS'
, createDataSourceFromRDS_roleARN
- The role that Amazon ML assumes on behalf of the user to create and
activate a data pipeline in the user's account and copy data using the
SelectSqlQuery
query from Amazon RDS to Amazon S3.
data CreateDataSourceFromRDSResponse Source #
Represents the output of a CreateDataSourceFromRDS
operation, and is
an acknowledgement that Amazon ML received the request.
The CreateDataSourceFromRDS
> operation is asynchronous. You can poll
for updates by using the GetBatchPrediction
operation and checking the
Status
parameter. You can inspect the Message
when Status
shows up
as FAILED
. You can also check the progress of the copy operation by
going to the DataPipeline
console and looking up the pipeline using
the pipelineId
from the describe call.
See: newCreateDataSourceFromRDSResponse
smart constructor.
Instances
Eq CreateDataSourceFromRDSResponse Source # | |
Read CreateDataSourceFromRDSResponse Source # | |
Show CreateDataSourceFromRDSResponse Source # | |
Generic CreateDataSourceFromRDSResponse Source # | |
NFData CreateDataSourceFromRDSResponse Source # | |
Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS rnf :: CreateDataSourceFromRDSResponse -> () # | |
type Rep CreateDataSourceFromRDSResponse Source # | |
Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS type Rep CreateDataSourceFromRDSResponse = D1 ('MetaData "CreateDataSourceFromRDSResponse" "Amazonka.MachineLearning.CreateDataSourceFromRDS" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromRDSResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))) |
newCreateDataSourceFromRDSResponse Source #
Create a value of CreateDataSourceFromRDSResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSourceId:CreateDataSourceFromRDS'
, createDataSourceFromRDSResponse_dataSourceId
- A user-supplied ID that uniquely identifies the datasource. This value
should be identical to the value of the DataSourceID
in the request.
$sel:httpStatus:CreateDataSourceFromRDSResponse'
, createDataSourceFromRDSResponse_httpStatus
- The response's http status code.
CreateEvaluation
data CreateEvaluation Source #
See: newCreateEvaluation
smart constructor.
Instances
:: Text | |
-> Text | |
-> Text | |
-> CreateEvaluation |
Create a value of CreateEvaluation
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationName:CreateEvaluation'
, createEvaluation_evaluationName
- A user-supplied name or description of the Evaluation
.
$sel:evaluationId:CreateEvaluation'
, createEvaluation_evaluationId
- A user-supplied ID that uniquely identifies the Evaluation
.
$sel:mLModelId:CreateEvaluation'
, createEvaluation_mLModelId
- The ID of the MLModel
to evaluate.
The schema used in creating the MLModel
must match the schema of the
DataSource
used in the Evaluation
.
$sel:evaluationDataSourceId:CreateEvaluation'
, createEvaluation_evaluationDataSourceId
- The ID of the DataSource
for the evaluation. The schema of the
DataSource
must match the schema used to create the MLModel
.
data CreateEvaluationResponse Source #
Represents the output of a CreateEvaluation
operation, and is an
acknowledgement that Amazon ML received the request.
CreateEvaluation
operation is asynchronous. You can poll for status
updates by using the GetEvcaluation
operation and checking the
Status
parameter.
See: newCreateEvaluationResponse
smart constructor.
Instances
newCreateEvaluationResponse Source #
Create a value of CreateEvaluationResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:CreateEvaluation'
, createEvaluationResponse_evaluationId
- The user-supplied ID that uniquely identifies the Evaluation
. This
value should be identical to the value of the EvaluationId
in the
request.
$sel:httpStatus:CreateEvaluationResponse'
, createEvaluationResponse_httpStatus
- The response's http status code.
Predict
See: newPredict
smart constructor.
Instances
Create a value of Predict
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:Predict'
, predict_mLModelId
- A unique identifier of the MLModel
.
$sel:record:Predict'
, predict_record
- Undocumented member.
$sel:predictEndpoint:Predict'
, predict_predictEndpoint
- Undocumented member.
data PredictResponse Source #
See: newPredictResponse
smart constructor.
Instances
Create a value of PredictResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:prediction:PredictResponse'
, predictResponse_prediction
- Undocumented member.
$sel:httpStatus:PredictResponse'
, predictResponse_httpStatus
- The response's http status code.
DeleteRealtimeEndpoint
data DeleteRealtimeEndpoint Source #
See: newDeleteRealtimeEndpoint
smart constructor.
Instances
newDeleteRealtimeEndpoint Source #
Create a value of DeleteRealtimeEndpoint
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:DeleteRealtimeEndpoint'
, deleteRealtimeEndpoint_mLModelId
- The ID assigned to the MLModel
during creation.
data DeleteRealtimeEndpointResponse Source #
Represents the output of an DeleteRealtimeEndpoint
operation.
The result contains the MLModelId
and the endpoint information for the
MLModel
.
See: newDeleteRealtimeEndpointResponse
smart constructor.
Instances
newDeleteRealtimeEndpointResponse Source #
Create a value of DeleteRealtimeEndpointResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:realtimeEndpointInfo:DeleteRealtimeEndpointResponse'
, deleteRealtimeEndpointResponse_realtimeEndpointInfo
- The endpoint information of the MLModel
$sel:mLModelId:DeleteRealtimeEndpoint'
, deleteRealtimeEndpointResponse_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelId
in the request.
$sel:httpStatus:DeleteRealtimeEndpointResponse'
, deleteRealtimeEndpointResponse_httpStatus
- The response's http status code.
CreateBatchPrediction
data CreateBatchPrediction Source #
See: newCreateBatchPrediction
smart constructor.
Instances
newCreateBatchPrediction Source #
:: Text | |
-> Text | |
-> Text | |
-> Text | |
-> CreateBatchPrediction |
Create a value of CreateBatchPrediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionName:CreateBatchPrediction'
, createBatchPrediction_batchPredictionName
- A user-supplied name or description of the BatchPrediction
.
BatchPredictionName
can only use the UTF-8 character set.
$sel:batchPredictionId:CreateBatchPrediction'
, createBatchPrediction_batchPredictionId
- A user-supplied ID that uniquely identifies the BatchPrediction
.
$sel:mLModelId:CreateBatchPrediction'
, createBatchPrediction_mLModelId
- The ID of the MLModel
that will generate predictions for the group of
observations.
$sel:batchPredictionDataSourceId:CreateBatchPrediction'
, createBatchPrediction_batchPredictionDataSourceId
- The ID of the DataSource
that points to the group of observations to
predict.
$sel:outputUri:CreateBatchPrediction'
, createBatchPrediction_outputUri
- The location of an Amazon Simple Storage Service (Amazon S3) bucket or
directory to store the batch prediction results. The following
substrings are not allowed in the s3 key
portion of the outputURI
field: ':', '//', '/./', '/../'.
Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.
data CreateBatchPredictionResponse Source #
Represents the output of a CreateBatchPrediction
operation, and is an
acknowledgement that Amazon ML received the request.
The CreateBatchPrediction
operation is asynchronous. You can poll for
status updates by using the >GetBatchPrediction
operation and checking
the Status
parameter of the result.
See: newCreateBatchPredictionResponse
smart constructor.
Instances
newCreateBatchPredictionResponse Source #
Create a value of CreateBatchPredictionResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:batchPredictionId:CreateBatchPrediction'
, createBatchPredictionResponse_batchPredictionId
- A user-supplied ID that uniquely identifies the BatchPrediction
. This
value is identical to the value of the BatchPredictionId
in the
request.
$sel:httpStatus:CreateBatchPredictionResponse'
, createBatchPredictionResponse_httpStatus
- The response's http status code.
GetEvaluation
data GetEvaluation Source #
See: newGetEvaluation
smart constructor.
Instances
Create a value of GetEvaluation
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:evaluationId:GetEvaluation'
, getEvaluation_evaluationId
- The ID of the Evaluation
to retrieve. The evaluation of each MLModel
is recorded and cataloged. The ID provides the means to access the
information.
data GetEvaluationResponse Source #
Represents the output of a GetEvaluation
operation and describes an
Evaluation
.
See: newGetEvaluationResponse
smart constructor.
GetEvaluationResponse' (Maybe EntityStatus) (Maybe PerformanceMetrics) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) Int |
Instances
newGetEvaluationResponse Source #
Create a value of GetEvaluationResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:GetEvaluationResponse'
, getEvaluationResponse_status
- The status of the evaluation. This element can have one of the following
values:
PENDING
- Amazon Machine Language (Amazon ML) submitted a request to evaluate anMLModel
.INPROGRESS
- The evaluation is underway.FAILED
- The request to evaluate anMLModel
did not run to completion. It is not usable.COMPLETED
- The evaluation process completed successfully.DELETED
- TheEvaluation
is marked as deleted. It is not usable.
$sel:performanceMetrics:GetEvaluationResponse'
, getEvaluationResponse_performanceMetrics
- Measurements of how well the MLModel
performed using observations
referenced by the DataSource
. One of the following metric is returned
based on the type of the MLModel
:
- BinaryAUC: A binary
MLModel
uses the Area Under the Curve (AUC) technique to measure performance. - RegressionRMSE: A regression
MLModel
uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable. - MulticlassAvgFScore: A multiclass
MLModel
uses the F1 score technique to measure performance.
For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.
$sel:lastUpdatedAt:GetEvaluationResponse'
, getEvaluationResponse_lastUpdatedAt
- The time of the most recent edit to the Evaluation
. The time is
expressed in epoch time.
$sel:createdAt:GetEvaluationResponse'
, getEvaluationResponse_createdAt
- The time that the Evaluation
was created. The time is expressed in
epoch time.
$sel:computeTime:GetEvaluationResponse'
, getEvaluationResponse_computeTime
- The approximate CPU time in milliseconds that Amazon Machine Learning
spent processing the Evaluation
, normalized and scaled on computation
resources. ComputeTime
is only available if the Evaluation
is in the
COMPLETED
state.
$sel:inputDataLocationS3:GetEvaluationResponse'
, getEvaluationResponse_inputDataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:mLModelId:GetEvaluationResponse'
, getEvaluationResponse_mLModelId
- The ID of the MLModel
that was the focus of the evaluation.
$sel:startedAt:GetEvaluationResponse'
, getEvaluationResponse_startedAt
- The epoch time when Amazon Machine Learning marked the Evaluation
as
INPROGRESS
. StartedAt
isn't available if the Evaluation
is in the
PENDING
state.
$sel:finishedAt:GetEvaluationResponse'
, getEvaluationResponse_finishedAt
- The epoch time when Amazon Machine Learning marked the Evaluation
as
COMPLETED
or FAILED
. FinishedAt
is only available when the
Evaluation
is in the COMPLETED
or FAILED
state.
$sel:createdByIamUser:GetEvaluationResponse'
, getEvaluationResponse_createdByIamUser
- The AWS user account that invoked the evaluation. The account type can
be either an AWS root account or an AWS Identity and Access Management
(IAM) user account.
$sel:name:GetEvaluationResponse'
, getEvaluationResponse_name
- A user-supplied name or description of the Evaluation
.
$sel:logUri:GetEvaluationResponse'
, getEvaluationResponse_logUri
- A link to the file that contains logs of the CreateEvaluation
operation.
$sel:evaluationId:GetEvaluation'
, getEvaluationResponse_evaluationId
- The evaluation ID which is same as the EvaluationId
in the request.
$sel:message:GetEvaluationResponse'
, getEvaluationResponse_message
- A description of the most recent details about evaluating the MLModel
.
$sel:evaluationDataSourceId:GetEvaluationResponse'
, getEvaluationResponse_evaluationDataSourceId
- The DataSource
used for this evaluation.
$sel:httpStatus:GetEvaluationResponse'
, getEvaluationResponse_httpStatus
- The response's http status code.
DescribeEvaluations (Paginated)
data DescribeEvaluations Source #
See: newDescribeEvaluations
smart constructor.
DescribeEvaluations' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe EvaluationFilterVariable) (Maybe Text) |
Instances
newDescribeEvaluations :: DescribeEvaluations Source #
Create a value of DescribeEvaluations
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:eq:DescribeEvaluations'
, describeEvaluations_eq
- The equal to operator. The Evaluation
results will have
FilterVariable
values that exactly match the value specified with
EQ
.
$sel:ge:DescribeEvaluations'
, describeEvaluations_ge
- The greater than or equal to operator. The Evaluation
results will
have FilterVariable
values that are greater than or equal to the value
specified with GE
.
$sel:prefix:DescribeEvaluations'
, describeEvaluations_prefix
- A string that is found at the beginning of a variable, such as Name
or
Id
.
For example, an Evaluation
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this Evaluation
, select
Name
for the FilterVariable
and any of the following strings for the
Prefix
:
- 2014-09
- 2014-09-09
- 2014-09-09-Holiday
$sel:gt:DescribeEvaluations'
, describeEvaluations_gt
- The greater than operator. The Evaluation
results will have
FilterVariable
values that are greater than the value specified with
GT
.
$sel:ne:DescribeEvaluations'
, describeEvaluations_ne
- The not equal to operator. The Evaluation
results will have
FilterVariable
values not equal to the value specified with NE
.
$sel:nextToken:DescribeEvaluations'
, describeEvaluations_nextToken
- The ID of the page in the paginated results.
$sel:sortOrder:DescribeEvaluations'
, describeEvaluations_sortOrder
- A two-value parameter that determines the sequence of the resulting list
of Evaluation
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
$sel:limit:DescribeEvaluations'
, describeEvaluations_limit
- The maximum number of Evaluation
to include in the result.
$sel:lt:DescribeEvaluations'
, describeEvaluations_lt
- The less than operator. The Evaluation
results will have
FilterVariable
values that are less than the value specified with
LT
.
$sel:filterVariable:DescribeEvaluations'
, describeEvaluations_filterVariable
- Use one of the following variable to filter a list of Evaluation
objects:
CreatedAt
- Sets the search criteria to theEvaluation
creation date.Status
- Sets the search criteria to theEvaluation
status.Name
- Sets the search criteria to the contents ofEvaluation
____Name
.IAMUser
- Sets the search criteria to the user account that invoked anEvaluation
.MLModelId
- Sets the search criteria to theMLModel
that was evaluated.DataSourceId
- Sets the search criteria to theDataSource
used inEvaluation
.DataUri
- Sets the search criteria to the data file(s) used inEvaluation
. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.
$sel:le:DescribeEvaluations'
, describeEvaluations_le
- The less than or equal to operator. The Evaluation
results will have
FilterVariable
values that are less than or equal to the value
specified with LE
.
data DescribeEvaluationsResponse Source #
Represents the query results from a DescribeEvaluations
operation. The
content is essentially a list of Evaluation
.
See: newDescribeEvaluationsResponse
smart constructor.
Instances
newDescribeEvaluationsResponse Source #
Create a value of DescribeEvaluationsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:results:DescribeEvaluationsResponse'
, describeEvaluationsResponse_results
- A list of Evaluation
that meet the search criteria.
$sel:nextToken:DescribeEvaluations'
, describeEvaluationsResponse_nextToken
- The ID of the next page in the paginated results that indicates at least
one more page follows.
$sel:httpStatus:DescribeEvaluationsResponse'
, describeEvaluationsResponse_httpStatus
- The response's http status code.
CreateRealtimeEndpoint
data CreateRealtimeEndpoint Source #
See: newCreateRealtimeEndpoint
smart constructor.
Instances
newCreateRealtimeEndpoint Source #
Create a value of CreateRealtimeEndpoint
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:mLModelId:CreateRealtimeEndpoint'
, createRealtimeEndpoint_mLModelId
- The ID assigned to the MLModel
during creation.
data CreateRealtimeEndpointResponse Source #
Represents the output of an CreateRealtimeEndpoint
operation.
The result contains the MLModelId
and the endpoint information for the
MLModel
.
Note: The endpoint information includes the URI of the MLModel
;
that is, the location to send online prediction requests for the
specified MLModel
.
See: newCreateRealtimeEndpointResponse
smart constructor.
Instances
newCreateRealtimeEndpointResponse Source #
Create a value of CreateRealtimeEndpointResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:realtimeEndpointInfo:CreateRealtimeEndpointResponse'
, createRealtimeEndpointResponse_realtimeEndpointInfo
- The endpoint information of the MLModel
$sel:mLModelId:CreateRealtimeEndpoint'
, createRealtimeEndpointResponse_mLModelId
- A user-supplied ID that uniquely identifies the MLModel
. This value
should be identical to the value of the MLModelId
in the request.
$sel:httpStatus:CreateRealtimeEndpointResponse'
, createRealtimeEndpointResponse_httpStatus
- The response's http status code.
AddTags
See: newAddTags
smart constructor.
Instances
Create a value of AddTags
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:tags:AddTags'
, addTags_tags
- The key-value pairs to use to create tags. If you specify a key without
specifying a value, Amazon ML creates a tag with the specified key and a
value of null.
$sel:resourceId:AddTags'
, addTags_resourceId
- The ID of the ML object to tag. For example, exampleModelId
.
$sel:resourceType:AddTags'
, addTags_resourceType
- The type of the ML object to tag.
data AddTagsResponse Source #
Amazon ML returns the following elements.
See: newAddTagsResponse
smart constructor.
Instances
Create a value of AddTagsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:resourceId:AddTags'
, addTagsResponse_resourceId
- The ID of the ML object that was tagged.
$sel:resourceType:AddTags'
, addTagsResponse_resourceType
- The type of the ML object that was tagged.
$sel:httpStatus:AddTagsResponse'
, addTagsResponse_httpStatus
- The response's http status code.
DescribeMLModels (Paginated)
data DescribeMLModels Source #
See: newDescribeMLModels
smart constructor.
DescribeMLModels' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe MLModelFilterVariable) (Maybe Text) |
Instances
newDescribeMLModels :: DescribeMLModels Source #
Create a value of DescribeMLModels
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:eq:DescribeMLModels'
, describeMLModels_eq
- The equal to operator. The MLModel
results will have FilterVariable
values that exactly match the value specified with EQ
.
$sel:ge:DescribeMLModels'
, describeMLModels_ge
- The greater than or equal to operator. The MLModel
results will have
FilterVariable
values that are greater than or equal to the value
specified with GE
.
$sel:prefix:DescribeMLModels'
, describeMLModels_prefix
- A string that is found at the beginning of a variable, such as Name
or
Id
.
For example, an MLModel
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this MLModel
, select
Name
for the FilterVariable
and any of the following strings for the
Prefix
:
- 2014-09
- 2014-09-09
- 2014-09-09-Holiday
$sel:gt:DescribeMLModels'
, describeMLModels_gt
- The greater than operator. The MLModel
results will have
FilterVariable
values that are greater than the value specified with
GT
.
$sel:ne:DescribeMLModels'
, describeMLModels_ne
- The not equal to operator. The MLModel
results will have
FilterVariable
values not equal to the value specified with NE
.
$sel:nextToken:DescribeMLModels'
, describeMLModels_nextToken
- The ID of the page in the paginated results.
$sel:sortOrder:DescribeMLModels'
, describeMLModels_sortOrder
- A two-value parameter that determines the sequence of the resulting list
of MLModel
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
$sel:limit:DescribeMLModels'
, describeMLModels_limit
- The number of pages of information to include in the result. The range
of acceptable values is 1
through 100
. The default value is 100
.
$sel:lt:DescribeMLModels'
, describeMLModels_lt
- The less than operator. The MLModel
results will have FilterVariable
values that are less than the value specified with LT
.
$sel:filterVariable:DescribeMLModels'
, describeMLModels_filterVariable
- Use one of the following variables to filter a list of MLModel
:
CreatedAt
- Sets the search criteria toMLModel
creation date.Status
- Sets the search criteria toMLModel
status.Name
- Sets the search criteria to the contents ofMLModel
____Name
.IAMUser
- Sets the search criteria to the user account that invoked theMLModel
creation.TrainingDataSourceId
- Sets the search criteria to theDataSource
used to train one or moreMLModel
.RealtimeEndpointStatus
- Sets the search criteria to theMLModel
real-time endpoint status.MLModelType
- Sets the search criteria toMLModel
type: binary, regression, or multi-class.Algorithm
- Sets the search criteria to the algorithm that theMLModel
uses.TrainingDataURI
- Sets the search criteria to the data file(s) used in training aMLModel
. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
$sel:le:DescribeMLModels'
, describeMLModels_le
- The less than or equal to operator. The MLModel
results will have
FilterVariable
values that are less than or equal to the value
specified with LE
.
data DescribeMLModelsResponse Source #
Represents the output of a DescribeMLModels
operation. The content is
essentially a list of MLModel
.
See: newDescribeMLModelsResponse
smart constructor.
Instances
newDescribeMLModelsResponse Source #
Create a value of DescribeMLModelsResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:results:DescribeMLModelsResponse'
, describeMLModelsResponse_results
- A list of MLModel
that meet the search criteria.
$sel:nextToken:DescribeMLModels'
, describeMLModelsResponse_nextToken
- The ID of the next page in the paginated results that indicates at least
one more page follows.
$sel:httpStatus:DescribeMLModelsResponse'
, describeMLModelsResponse_httpStatus
- The response's http status code.
DescribeDataSources (Paginated)
data DescribeDataSources Source #
See: newDescribeDataSources
smart constructor.
DescribeDataSources' (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe SortOrder) (Maybe Natural) (Maybe Text) (Maybe DataSourceFilterVariable) (Maybe Text) |
Instances
newDescribeDataSources :: DescribeDataSources Source #
Create a value of DescribeDataSources
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:eq:DescribeDataSources'
, describeDataSources_eq
- The equal to operator. The DataSource
results will have
FilterVariable
values that exactly match the value specified with
EQ
.
$sel:ge:DescribeDataSources'
, describeDataSources_ge
- The greater than or equal to operator. The DataSource
results will
have FilterVariable
values that are greater than or equal to the value
specified with GE
.
$sel:prefix:DescribeDataSources'
, describeDataSources_prefix
- A string that is found at the beginning of a variable, such as Name
or
Id
.
For example, a DataSource
could have the Name
2014-09-09-HolidayGiftMailer
. To search for this DataSource
, select
Name
for the FilterVariable
and any of the following strings for the
Prefix
:
- 2014-09
- 2014-09-09
- 2014-09-09-Holiday
$sel:gt:DescribeDataSources'
, describeDataSources_gt
- The greater than operator. The DataSource
results will have
FilterVariable
values that are greater than the value specified with
GT
.
$sel:ne:DescribeDataSources'
, describeDataSources_ne
- The not equal to operator. The DataSource
results will have
FilterVariable
values not equal to the value specified with NE
.
$sel:nextToken:DescribeDataSources'
, describeDataSources_nextToken
- The ID of the page in the paginated results.
$sel:sortOrder:DescribeDataSources'
, describeDataSources_sortOrder
- A two-value parameter that determines the sequence of the resulting list
of DataSource
.
asc
- Arranges the list in ascending order (A-Z, 0-9).dsc
- Arranges the list in descending order (Z-A, 9-0).
Results are sorted by FilterVariable
.
$sel:limit:DescribeDataSources'
, describeDataSources_limit
- The maximum number of DataSource
to include in the result.
$sel:lt:DescribeDataSources'
, describeDataSources_lt
- The less than operator. The DataSource
results will have
FilterVariable
values that are less than the value specified with
LT
.
$sel:filterVariable:DescribeDataSources'
, describeDataSources_filterVariable
- Use one of the following variables to filter a list of DataSource
:
CreatedAt
- Sets the search criteria toDataSource
creation dates.Status
- Sets the search criteria toDataSource
statuses.Name
- Sets the search criteria to the contents ofDataSource
Name
.DataUri
- Sets the search criteria to the URI of data files used to create theDataSource
. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.IAMUser
- Sets the search criteria to the user account that invoked theDataSource
creation.
$sel:le:DescribeDataSources'
, describeDataSources_le
- The less than or equal to operator. The DataSource
results will have
FilterVariable
values that are less than or equal to the value
specified with LE
.
data DescribeDataSourcesResponse Source #
Represents the query results from a DescribeDataSources operation. The
content is essentially a list of DataSource
.
See: newDescribeDataSourcesResponse
smart constructor.
Instances
newDescribeDataSourcesResponse Source #
Create a value of DescribeDataSourcesResponse
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:results:DescribeDataSourcesResponse'
, describeDataSourcesResponse_results
- A list of DataSource
that meet the search criteria.
$sel:nextToken:DescribeDataSources'
, describeDataSourcesResponse_nextToken
- An ID of the next page in the paginated results that indicates at least
one more page follows.
$sel:httpStatus:DescribeDataSourcesResponse'
, describeDataSourcesResponse_httpStatus
- The response's http status code.
Types
Algorithm
The function used to train an MLModel
. Training choices supported by
Amazon ML include the following:
SGD
- Stochastic Gradient Descent.RandomForest
- Random forest of decision trees.
pattern Algorithm_Sgd :: Algorithm |
Instances
BatchPredictionFilterVariable
newtype BatchPredictionFilterVariable Source #
A list of the variables to use in searching or filtering
BatchPrediction
.
CreatedAt
- Sets the search criteria toBatchPrediction
creation date.Status
- Sets the search criteria toBatchPrediction
status.Name
- Sets the search criteria to the contents ofBatchPrediction
Name
.IAMUser
- Sets the search criteria to the user account that invoked theBatchPrediction
creation.MLModelId
- Sets the search criteria to theMLModel
used in theBatchPrediction
.DataSourceId
- Sets the search criteria to theDataSource
used in theBatchPrediction
.DataURI
- Sets the search criteria to the data file(s) used in theBatchPrediction
. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
Instances
DataSourceFilterVariable
newtype DataSourceFilterVariable Source #
A list of the variables to use in searching or filtering DataSource
.
CreatedAt
- Sets the search criteria toDataSource
creation date.Status
- Sets the search criteria toDataSource
status.Name
- Sets the search criteria to the contents ofDataSource
Name
.DataUri
- Sets the search criteria to the URI of data files used to create theDataSource
. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.IAMUser
- Sets the search criteria to the user account that invoked theDataSource
creation.
Note: The variable names should match the variable names in the
DataSource
.
Instances
DetailsAttributes
newtype DetailsAttributes Source #
Contains the key values of DetailsMap
:
PredictiveModelType
- Indicates the type of theMLModel
.Algorithm
- Indicates the algorithm that was used for theMLModel
.
pattern DetailsAttributes_Algorithm :: DetailsAttributes | |
pattern DetailsAttributes_PredictiveModelType :: DetailsAttributes |
Instances
EntityStatus
newtype EntityStatus Source #
Object status with the following possible values:
PENDING
INPROGRESS
FAILED
COMPLETED
DELETED
pattern EntityStatus_COMPLETED :: EntityStatus | |
pattern EntityStatus_DELETED :: EntityStatus | |
pattern EntityStatus_FAILED :: EntityStatus | |
pattern EntityStatus_INPROGRESS :: EntityStatus | |
pattern EntityStatus_PENDING :: EntityStatus |
Instances
EvaluationFilterVariable
newtype EvaluationFilterVariable Source #
A list of the variables to use in searching or filtering Evaluation
.
CreatedAt
- Sets the search criteria toEvaluation
creation date.Status
- Sets the search criteria toEvaluation
status.Name
- Sets the search criteria to the contents ofEvaluation
____Name
.IAMUser
- Sets the search criteria to the user account that invoked an evaluation.MLModelId
- Sets the search criteria to thePredictor
that was evaluated.DataSourceId
- Sets the search criteria to theDataSource
used in evaluation.DataUri
- Sets the search criteria to the data file(s) used in evaluation. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
Instances
MLModelFilterVariable
newtype MLModelFilterVariable Source #
Instances
MLModelType
newtype MLModelType Source #
pattern MLModelType_BINARY :: MLModelType | |
pattern MLModelType_MULTICLASS :: MLModelType | |
pattern MLModelType_REGRESSION :: MLModelType |
Instances
RealtimeEndpointStatus
newtype RealtimeEndpointStatus Source #
pattern RealtimeEndpointStatus_FAILED :: RealtimeEndpointStatus | |
pattern RealtimeEndpointStatus_NONE :: RealtimeEndpointStatus | |
pattern RealtimeEndpointStatus_READY :: RealtimeEndpointStatus | |
pattern RealtimeEndpointStatus_UPDATING :: RealtimeEndpointStatus |
Instances
SortOrder
The sort order specified in a listing condition. Possible values include the following:
asc
- Present the information in ascending order (from A-Z).dsc
- Present the information in descending order (from Z-A).
pattern SortOrder_Asc :: SortOrder | |
pattern SortOrder_Dsc :: SortOrder |
Instances
TaggableResourceType
newtype TaggableResourceType Source #
Instances
BatchPrediction
data BatchPrediction Source #
Represents the output of a GetBatchPrediction
operation.
The content consists of the detailed metadata, the status, and the data
file information of a Batch Prediction
.
See: newBatchPrediction
smart constructor.
BatchPrediction' (Maybe EntityStatus) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Text) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) |
Instances
newBatchPrediction :: BatchPrediction Source #
Create a value of BatchPrediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:BatchPrediction'
, batchPrediction_status
- The status of the BatchPrediction
. This element can have one of the
following values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to generate predictions for a batch of observations.INPROGRESS
- The process is underway.FAILED
- The request to perform a batch prediction did not run to completion. It is not usable.COMPLETED
- The batch prediction process completed successfully.DELETED
- TheBatchPrediction
is marked as deleted. It is not usable.
$sel:lastUpdatedAt:BatchPrediction'
, batchPrediction_lastUpdatedAt
- The time of the most recent edit to the BatchPrediction
. The time is
expressed in epoch time.
$sel:createdAt:BatchPrediction'
, batchPrediction_createdAt
- The time that the BatchPrediction
was created. The time is expressed
in epoch time.
$sel:computeTime:BatchPrediction'
, batchPrediction_computeTime
- Undocumented member.
$sel:inputDataLocationS3:BatchPrediction'
, batchPrediction_inputDataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:mLModelId:BatchPrediction'
, batchPrediction_mLModelId
- The ID of the MLModel
that generated predictions for the
BatchPrediction
request.
$sel:batchPredictionDataSourceId:BatchPrediction'
, batchPrediction_batchPredictionDataSourceId
- The ID of the DataSource
that points to the group of observations to
predict.
$sel:totalRecordCount:BatchPrediction'
, batchPrediction_totalRecordCount
- Undocumented member.
$sel:startedAt:BatchPrediction'
, batchPrediction_startedAt
- Undocumented member.
$sel:batchPredictionId:BatchPrediction'
, batchPrediction_batchPredictionId
- The ID assigned to the BatchPrediction
at creation. This value should
be identical to the value of the BatchPredictionID
in the request.
$sel:finishedAt:BatchPrediction'
, batchPrediction_finishedAt
- Undocumented member.
$sel:invalidRecordCount:BatchPrediction'
, batchPrediction_invalidRecordCount
- Undocumented member.
$sel:createdByIamUser:BatchPrediction'
, batchPrediction_createdByIamUser
- The AWS user account that invoked the BatchPrediction
. The account
type can be either an AWS root account or an AWS Identity and Access
Management (IAM) user account.
$sel:name:BatchPrediction'
, batchPrediction_name
- A user-supplied name or description of the BatchPrediction
.
$sel:message:BatchPrediction'
, batchPrediction_message
- A description of the most recent details about processing the batch
prediction request.
$sel:outputUri:BatchPrediction'
, batchPrediction_outputUri
- The location of an Amazon S3 bucket or directory to receive the
operation results. The following substrings are not allowed in the
s3 key
portion of the outputURI
field: ':', '//', '/./',
'/../'.
DataSource
data DataSource Source #
Represents the output of the GetDataSource
operation.
The content consists of the detailed metadata and data file information
and the current status of the DataSource
.
See: newDataSource
smart constructor.
DataSource' (Maybe EntityStatus) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe RDSMetadata) (Maybe Integer) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Bool) (Maybe Text) (Maybe RedshiftMetadata) (Maybe Text) (Maybe Text) |
Instances
newDataSource :: DataSource Source #
Create a value of DataSource
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:DataSource'
, dataSource_status
- The current status of the DataSource
. This element can have one of the
following values:
- PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
create a
DataSource
. - INPROGRESS - The creation process is underway.
- FAILED - The request to create a
DataSource
did not run to completion. It is not usable. - COMPLETED - The creation process completed successfully.
- DELETED - The
DataSource
is marked as deleted. It is not usable.
$sel:numberOfFiles:DataSource'
, dataSource_numberOfFiles
- The number of data files referenced by the DataSource
.
$sel:lastUpdatedAt:DataSource'
, dataSource_lastUpdatedAt
- The time of the most recent edit to the BatchPrediction
. The time is
expressed in epoch time.
$sel:createdAt:DataSource'
, dataSource_createdAt
- The time that the DataSource
was created. The time is expressed in
epoch time.
$sel:computeTime:DataSource'
, dataSource_computeTime
- Undocumented member.
$sel:dataSourceId:DataSource'
, dataSource_dataSourceId
- The ID that is assigned to the DataSource
during creation.
$sel:rDSMetadata:DataSource'
, dataSource_rDSMetadata
- Undocumented member.
$sel:dataSizeInBytes:DataSource'
, dataSource_dataSizeInBytes
- The total number of observations contained in the data files that the
DataSource
references.
$sel:startedAt:DataSource'
, dataSource_startedAt
- Undocumented member.
$sel:finishedAt:DataSource'
, dataSource_finishedAt
- Undocumented member.
$sel:createdByIamUser:DataSource'
, dataSource_createdByIamUser
- The AWS user account from which the DataSource
was created. The
account type can be either an AWS root account or an AWS Identity and
Access Management (IAM) user account.
$sel:name:DataSource'
, dataSource_name
- A user-supplied name or description of the DataSource
.
$sel:dataLocationS3:DataSource'
, dataSource_dataLocationS3
- The location and name of the data in Amazon Simple Storage Service
(Amazon S3) that is used by a DataSource
.
$sel:computeStatistics:DataSource'
, dataSource_computeStatistics
- The parameter is true
if statistics need to be generated from the
observation data.
$sel:message:DataSource'
, dataSource_message
- A description of the most recent details about creating the
DataSource
.
$sel:redshiftMetadata:DataSource'
, dataSource_redshiftMetadata
- Undocumented member.
$sel:dataRearrangement:DataSource'
, dataSource_dataRearrangement
- A JSON string that represents the splitting and rearrangement
requirement used when this DataSource
was created.
$sel:roleARN:DataSource'
, dataSource_roleARN
- Undocumented member.
Evaluation
data Evaluation Source #
Represents the output of GetEvaluation
operation.
The content consists of the detailed metadata and data file information
and the current status of the Evaluation
.
See: newEvaluation
smart constructor.
Evaluation' (Maybe EntityStatus) (Maybe PerformanceMetrics) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe POSIX) (Maybe POSIX) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) (Maybe Text) |
Instances
newEvaluation :: Evaluation Source #
Create a value of Evaluation
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:Evaluation'
, evaluation_status
- The status of the evaluation. This element can have one of the following
values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to evaluate anMLModel
.INPROGRESS
- The evaluation is underway.FAILED
- The request to evaluate anMLModel
did not run to completion. It is not usable.COMPLETED
- The evaluation process completed successfully.DELETED
- TheEvaluation
is marked as deleted. It is not usable.
$sel:performanceMetrics:Evaluation'
, evaluation_performanceMetrics
- Measurements of how well the MLModel
performed, using observations
referenced by the DataSource
. One of the following metrics is
returned, based on the type of the MLModel
:
- BinaryAUC: A binary
MLModel
uses the Area Under the Curve (AUC) technique to measure performance. - RegressionRMSE: A regression
MLModel
uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable. - MulticlassAvgFScore: A multiclass
MLModel
uses the F1 score technique to measure performance.
For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.
$sel:lastUpdatedAt:Evaluation'
, evaluation_lastUpdatedAt
- The time of the most recent edit to the Evaluation
. The time is
expressed in epoch time.
$sel:createdAt:Evaluation'
, evaluation_createdAt
- The time that the Evaluation
was created. The time is expressed in
epoch time.
$sel:computeTime:Evaluation'
, evaluation_computeTime
- Undocumented member.
$sel:inputDataLocationS3:Evaluation'
, evaluation_inputDataLocationS3
- The location and name of the data in Amazon Simple Storage Server
(Amazon S3) that is used in the evaluation.
$sel:mLModelId:Evaluation'
, evaluation_mLModelId
- The ID of the MLModel
that is the focus of the evaluation.
$sel:startedAt:Evaluation'
, evaluation_startedAt
- Undocumented member.
$sel:finishedAt:Evaluation'
, evaluation_finishedAt
- Undocumented member.
$sel:createdByIamUser:Evaluation'
, evaluation_createdByIamUser
- The AWS user account that invoked the evaluation. The account type can
be either an AWS root account or an AWS Identity and Access Management
(IAM) user account.
$sel:name:Evaluation'
, evaluation_name
- A user-supplied name or description of the Evaluation
.
$sel:evaluationId:Evaluation'
, evaluation_evaluationId
- The ID that is assigned to the Evaluation
at creation.
$sel:message:Evaluation'
, evaluation_message
- A description of the most recent details about evaluating the MLModel
.
$sel:evaluationDataSourceId:Evaluation'
, evaluation_evaluationDataSourceId
- The ID of the DataSource
that is used to evaluate the MLModel
.
MLModel
Represents the output of a GetMLModel
operation.
The content consists of the detailed metadata and the current status of
the MLModel
.
See: newMLModel
smart constructor.
MLModel' (Maybe EntityStatus) (Maybe POSIX) (Maybe (HashMap Text Text)) (Maybe POSIX) (Maybe POSIX) (Maybe Integer) (Maybe Text) (Maybe Text) (Maybe Integer) (Maybe POSIX) (Maybe Double) (Maybe POSIX) (Maybe Algorithm) (Maybe Text) (Maybe Text) (Maybe RealtimeEndpointInfo) (Maybe Text) (Maybe Text) (Maybe MLModelType) |
Instances
newMLModel :: MLModel Source #
Create a value of MLModel
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:status:MLModel'
, mLModel_status
- The current status of an MLModel
. This element can have one of the
following values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to create anMLModel
.INPROGRESS
- The creation process is underway.FAILED
- The request to create anMLModel
didn't run to completion. The model isn't usable.COMPLETED
- The creation process completed successfully.DELETED
- TheMLModel
is marked as deleted. It isn't usable.
$sel:lastUpdatedAt:MLModel'
, mLModel_lastUpdatedAt
- The time of the most recent edit to the MLModel
. The time is expressed
in epoch time.
$sel:trainingParameters:MLModel'
, mLModel_trainingParameters
- A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm, which controls overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm, which controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
$sel:scoreThresholdLastUpdatedAt:MLModel'
, mLModel_scoreThresholdLastUpdatedAt
- The time of the most recent edit to the ScoreThreshold
. The time is
expressed in epoch time.
$sel:createdAt:MLModel'
, mLModel_createdAt
- The time that the MLModel
was created. The time is expressed in epoch
time.
$sel:computeTime:MLModel'
, mLModel_computeTime
- Undocumented member.
$sel:inputDataLocationS3:MLModel'
, mLModel_inputDataLocationS3
- The location of the data file or directory in Amazon Simple Storage
Service (Amazon S3).
$sel:mLModelId:MLModel'
, mLModel_mLModelId
- The ID assigned to the MLModel
at creation.
$sel:sizeInBytes:MLModel'
, mLModel_sizeInBytes
- Undocumented member.
$sel:startedAt:MLModel'
, mLModel_startedAt
- Undocumented member.
$sel:scoreThreshold:MLModel'
, mLModel_scoreThreshold
- Undocumented member.
$sel:finishedAt:MLModel'
, mLModel_finishedAt
- Undocumented member.
$sel:algorithm:MLModel'
, mLModel_algorithm
- The algorithm used to train the MLModel
. The following algorithm is
supported:
SGD
-- Stochastic gradient descent. The goal ofSGD
is to minimize the gradient of the loss function.
$sel:createdByIamUser:MLModel'
, mLModel_createdByIamUser
- The AWS user account from which the MLModel
was created. The account
type can be either an AWS root account or an AWS Identity and Access
Management (IAM) user account.
$sel:name:MLModel'
, mLModel_name
- A user-supplied name or description of the MLModel
.
$sel:endpointInfo:MLModel'
, mLModel_endpointInfo
- The current endpoint of the MLModel
.
$sel:trainingDataSourceId:MLModel'
, mLModel_trainingDataSourceId
- The ID of the training DataSource
. The CreateMLModel
operation uses
the TrainingDataSourceId
.
$sel:message:MLModel'
, mLModel_message
- A description of the most recent details about accessing the MLModel
.
$sel:mLModelType:MLModel'
, mLModel_mLModelType
- Identifies the MLModel
category. The following are the available
types:
REGRESSION
- Produces a numeric result. For example, "What price should a house be listed at?"BINARY
- Produces one of two possible results. For example, "Is this a child-friendly web site?".MULTICLASS
- Produces one of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".
PerformanceMetrics
data PerformanceMetrics Source #
Measurements of how well the MLModel
performed on known observations.
One of the following metrics is returned, based on the type of the
MLModel
:
- BinaryAUC: The binary
MLModel
uses the Area Under the Curve (AUC) technique to measure performance. - RegressionRMSE: The regression
MLModel
uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable. - MulticlassAvgFScore: The multiclass
MLModel
uses the F1 score technique to measure performance.
For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.
See: newPerformanceMetrics
smart constructor.
Instances
newPerformanceMetrics :: PerformanceMetrics Source #
Create a value of PerformanceMetrics
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:properties:PerformanceMetrics'
, performanceMetrics_properties
- Undocumented member.
Prediction
data Prediction Source #
The output from a Predict
operation:
Details
- Contains the following attributes:DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASS
DetailsAttributes.ALGORITHM - SGD
PredictedLabel
- Present for either aBINARY
orMULTICLASS
MLModel
request.PredictedScores
- Contains the raw classification score corresponding to each label.PredictedValue
- Present for aREGRESSION
MLModel
request.
See: newPrediction
smart constructor.
Prediction' (Maybe Double) (Maybe Text) (Maybe (HashMap Text Double)) (Maybe (HashMap DetailsAttributes Text)) |
Instances
newPrediction :: Prediction Source #
Create a value of Prediction
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:predictedValue:Prediction'
, prediction_predictedValue
- The prediction value for REGRESSION
MLModel
.
$sel:predictedLabel:Prediction'
, prediction_predictedLabel
- The prediction label for either a BINARY
or MULTICLASS
MLModel
.
$sel:predictedScores:Prediction'
, prediction_predictedScores
- Undocumented member.
$sel:details:Prediction'
, prediction_details
- Undocumented member.
RDSDataSpec
data RDSDataSpec Source #
The data specification of an Amazon Relational Database Service (Amazon
RDS) DataSource
.
See: newRDSDataSpec
smart constructor.
RDSDataSpec' (Maybe Text) (Maybe Text) (Maybe Text) RDSDatabase Text RDSDatabaseCredentials Text Text Text Text [Text] |
Instances
:: RDSDatabase | |
-> Text | |
-> RDSDatabaseCredentials | |
-> Text | |
-> Text | |
-> Text | |
-> Text | |
-> RDSDataSpec |
Create a value of RDSDataSpec
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSchemaUri:RDSDataSpec'
, rDSDataSpec_dataSchemaUri
- The Amazon S3 location of the DataSchema
.
$sel:dataSchema:RDSDataSpec'
, rDSDataSpec_dataSchema
- A JSON string that represents the schema for an Amazon RDS DataSource
.
The DataSchema
defines the structure of the observation data in the
data file(s) referenced in the DataSource
.
A DataSchema
is not required if you specify a DataSchemaUri
Define your DataSchema
as a series of key-value pairs. attributes
and excludedVariableNames
have an array of key-value pairs for their
value. Use the following format to define your DataSchema
.
{ "version": "1.0",
"recordAnnotationFieldName": "F1",
"recordWeightFieldName": "F2",
"targetFieldName": "F3",
"dataFormat": "CSV",
"dataFileContainsHeader": true,
"attributes": [
{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],
"excludedVariableNames": [ "F6" ] }
$sel:dataRearrangement:RDSDataSpec'
, rDSDataSpec_dataRearrangement
- A JSON string that represents the splitting and rearrangement processing
to be applied to a DataSource
. If the DataRearrangement
parameter is
not provided, all of the input data is used to create the Datasource
.
There are multiple parameters that control what data is used to create a datasource:
percentBegin
Use
percentBegin
to indicate the beginning of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.percentEnd
Use
percentEnd
to indicate the end of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.complement
The
complement
parameter instructs Amazon ML to use the data that is not included in the range ofpercentBegin
topercentEnd
to create a datasource. Thecomplement
parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values forpercentBegin
andpercentEnd
, along with thecomplement
parameter.For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.
Datasource for evaluation:
{"splitting":{"percentBegin":0, "percentEnd":25}}
Datasource for training:
{"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}
strategy
To change how Amazon ML splits the data for a datasource, use the
strategy
parameter.The default value for the
strategy
parameter issequential
, meaning that Amazon ML takes all of the data records between thepercentBegin
andpercentEnd
parameters for the datasource, in the order that the records appear in the input data.The following two
DataRearrangement
lines are examples of sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}
To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the
strategy
parameter torandom
and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number betweenpercentBegin
andpercentEnd
. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.The following two
DataRearrangement
lines are examples of non-sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
$sel:databaseInformation:RDSDataSpec'
, rDSDataSpec_databaseInformation
- Describes the DatabaseName
and InstanceIdentifier
of an Amazon RDS
database.
$sel:selectSqlQuery:RDSDataSpec'
, rDSDataSpec_selectSqlQuery
- The query that is used to retrieve the observation data for the
DataSource
.
$sel:databaseCredentials:RDSDataSpec'
, rDSDataSpec_databaseCredentials
- The AWS Identity and Access Management (IAM) credentials that are used
connect to the Amazon RDS database.
$sel:s3StagingLocation:RDSDataSpec'
, rDSDataSpec_s3StagingLocation
- The Amazon S3 location for staging Amazon RDS data. The data retrieved
from Amazon RDS using SelectSqlQuery
is stored in this location.
$sel:resourceRole:RDSDataSpec'
, rDSDataSpec_resourceRole
- The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic
Compute Cloud (Amazon EC2) instance to carry out the copy operation from
Amazon RDS to an Amazon S3 task. For more information, see
Role templates
for data pipelines.
$sel:serviceRole:RDSDataSpec'
, rDSDataSpec_serviceRole
- The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service
to monitor the progress of the copy task from Amazon RDS to Amazon S3.
For more information, see
Role templates
for data pipelines.
$sel:subnetId:RDSDataSpec'
, rDSDataSpec_subnetId
- The subnet ID to be used to access a VPC-based RDS DB instance. This
attribute is used by Data Pipeline to carry out the copy task from
Amazon RDS to Amazon S3.
$sel:securityGroupIds:RDSDataSpec'
, rDSDataSpec_securityGroupIds
- The security group IDs to be used to access a VPC-based RDS DB instance.
Ensure that there are appropriate ingress rules set up to allow access
to the RDS DB instance. This attribute is used by Data Pipeline to carry
out the copy operation from Amazon RDS to an Amazon S3 task.
RDSDatabase
data RDSDatabase Source #
The database details of an Amazon RDS database.
See: newRDSDatabase
smart constructor.
Instances
Create a value of RDSDatabase
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:instanceIdentifier:RDSDatabase'
, rDSDatabase_instanceIdentifier
- The ID of an RDS DB instance.
$sel:databaseName:RDSDatabase'
, rDSDatabase_databaseName
- Undocumented member.
RDSDatabaseCredentials
data RDSDatabaseCredentials Source #
The database credentials to connect to a database on an RDS DB instance.
See: newRDSDatabaseCredentials
smart constructor.
Instances
newRDSDatabaseCredentials Source #
:: Text | |
-> Text | |
-> RDSDatabaseCredentials |
Create a value of RDSDatabaseCredentials
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:username:RDSDatabaseCredentials'
, rDSDatabaseCredentials_username
- Undocumented member.
$sel:password:RDSDatabaseCredentials'
, rDSDatabaseCredentials_password
- Undocumented member.
RDSMetadata
data RDSMetadata Source #
The datasource details that are specific to Amazon RDS.
See: newRDSMetadata
smart constructor.
Instances
newRDSMetadata :: RDSMetadata Source #
Create a value of RDSMetadata
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:selectSqlQuery:RDSMetadata'
, rDSMetadata_selectSqlQuery
- The SQL query that is supplied during CreateDataSourceFromRDS. Returns
only if Verbose
is true in GetDataSourceInput
.
$sel:dataPipelineId:RDSMetadata'
, rDSMetadata_dataPipelineId
- The ID of the Data Pipeline instance that is used to carry to copy data
from Amazon RDS to Amazon S3. You can use the ID to find details about
the instance in the Data Pipeline console.
$sel:database:RDSMetadata'
, rDSMetadata_database
- The database details required to connect to an Amazon RDS.
$sel:databaseUserName:RDSMetadata'
, rDSMetadata_databaseUserName
- Undocumented member.
$sel:resourceRole:RDSMetadata'
, rDSMetadata_resourceRole
- The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2
instance to carry out the copy task from Amazon RDS to Amazon S3. For
more information, see
Role templates
for data pipelines.
$sel:serviceRole:RDSMetadata'
, rDSMetadata_serviceRole
- The role (DataPipelineDefaultRole) assumed by the Data Pipeline service
to monitor the progress of the copy task from Amazon RDS to Amazon S3.
For more information, see
Role templates
for data pipelines.
RealtimeEndpointInfo
data RealtimeEndpointInfo Source #
Describes the real-time endpoint information for an MLModel
.
See: newRealtimeEndpointInfo
smart constructor.
Instances
newRealtimeEndpointInfo :: RealtimeEndpointInfo Source #
Create a value of RealtimeEndpointInfo
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:createdAt:RealtimeEndpointInfo'
, realtimeEndpointInfo_createdAt
- The time that the request to create the real-time endpoint for the
MLModel
was received. The time is expressed in epoch time.
$sel:endpointUrl:RealtimeEndpointInfo'
, realtimeEndpointInfo_endpointUrl
- The URI that specifies where to send real-time prediction requests for
the MLModel
.
Note: The application must wait until the real-time endpoint is ready before using this URI.
$sel:endpointStatus:RealtimeEndpointInfo'
, realtimeEndpointInfo_endpointStatus
- The current status of the real-time endpoint for the MLModel
. This
element can have one of the following values:
NONE
- Endpoint does not exist or was previously deleted.READY
- Endpoint is ready to be used for real-time predictions.UPDATING
- Updating/creating the endpoint.
$sel:peakRequestsPerSecond:RealtimeEndpointInfo'
, realtimeEndpointInfo_peakRequestsPerSecond
- The maximum processing rate for the real-time endpoint for MLModel
,
measured in incoming requests per second.
RedshiftDataSpec
data RedshiftDataSpec Source #
Describes the data specification of an Amazon Redshift DataSource
.
See: newRedshiftDataSpec
smart constructor.
RedshiftDataSpec' (Maybe Text) (Maybe Text) (Maybe Text) RedshiftDatabase Text RedshiftDatabaseCredentials Text |
Instances
Create a value of RedshiftDataSpec
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSchemaUri:RedshiftDataSpec'
, redshiftDataSpec_dataSchemaUri
- Describes the schema location for an Amazon Redshift DataSource
.
$sel:dataSchema:RedshiftDataSpec'
, redshiftDataSpec_dataSchema
- A JSON string that represents the schema for an Amazon Redshift
DataSource
. The DataSchema
defines the structure of the observation
data in the data file(s) referenced in the DataSource
.
A DataSchema
is not required if you specify a DataSchemaUri
.
Define your DataSchema
as a series of key-value pairs. attributes
and excludedVariableNames
have an array of key-value pairs for their
value. Use the following format to define your DataSchema
.
{ "version": "1.0",
"recordAnnotationFieldName": "F1",
"recordWeightFieldName": "F2",
"targetFieldName": "F3",
"dataFormat": "CSV",
"dataFileContainsHeader": true,
"attributes": [
{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],
"excludedVariableNames": [ "F6" ] }
$sel:dataRearrangement:RedshiftDataSpec'
, redshiftDataSpec_dataRearrangement
- A JSON string that represents the splitting and rearrangement processing
to be applied to a DataSource
. If the DataRearrangement
parameter is
not provided, all of the input data is used to create the Datasource
.
There are multiple parameters that control what data is used to create a datasource:
percentBegin
Use
percentBegin
to indicate the beginning of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.percentEnd
Use
percentEnd
to indicate the end of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.complement
The
complement
parameter instructs Amazon ML to use the data that is not included in the range ofpercentBegin
topercentEnd
to create a datasource. Thecomplement
parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values forpercentBegin
andpercentEnd
, along with thecomplement
parameter.For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.
Datasource for evaluation:
{"splitting":{"percentBegin":0, "percentEnd":25}}
Datasource for training:
{"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}
strategy
To change how Amazon ML splits the data for a datasource, use the
strategy
parameter.The default value for the
strategy
parameter issequential
, meaning that Amazon ML takes all of the data records between thepercentBegin
andpercentEnd
parameters for the datasource, in the order that the records appear in the input data.The following two
DataRearrangement
lines are examples of sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}
To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the
strategy
parameter torandom
and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number betweenpercentBegin
andpercentEnd
. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.The following two
DataRearrangement
lines are examples of non-sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
$sel:databaseInformation:RedshiftDataSpec'
, redshiftDataSpec_databaseInformation
- Describes the DatabaseName
and ClusterIdentifier
for an Amazon
Redshift DataSource
.
$sel:selectSqlQuery:RedshiftDataSpec'
, redshiftDataSpec_selectSqlQuery
- Describes the SQL Query to execute on an Amazon Redshift database for an
Amazon Redshift DataSource
.
$sel:databaseCredentials:RedshiftDataSpec'
, redshiftDataSpec_databaseCredentials
- Describes AWS Identity and Access Management (IAM) credentials that are
used connect to the Amazon Redshift database.
$sel:s3StagingLocation:RedshiftDataSpec'
, redshiftDataSpec_s3StagingLocation
- Describes an Amazon S3 location to store the result set of the
SelectSqlQuery
query.
RedshiftDatabase
data RedshiftDatabase Source #
Describes the database details required to connect to an Amazon Redshift database.
See: newRedshiftDatabase
smart constructor.
Instances
:: Text | |
-> Text | |
-> RedshiftDatabase |
Create a value of RedshiftDatabase
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:databaseName:RedshiftDatabase'
, redshiftDatabase_databaseName
- Undocumented member.
$sel:clusterIdentifier:RedshiftDatabase'
, redshiftDatabase_clusterIdentifier
- Undocumented member.
RedshiftDatabaseCredentials
data RedshiftDatabaseCredentials Source #
Describes the database credentials for connecting to a database on an Amazon Redshift cluster.
See: newRedshiftDatabaseCredentials
smart constructor.
Instances
Eq RedshiftDatabaseCredentials Source # | |
Read RedshiftDatabaseCredentials Source # | |
Show RedshiftDatabaseCredentials Source # | |
Generic RedshiftDatabaseCredentials Source # | |
NFData RedshiftDatabaseCredentials Source # | |
Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials rnf :: RedshiftDatabaseCredentials -> () # | |
Hashable RedshiftDatabaseCredentials Source # | |
ToJSON RedshiftDatabaseCredentials Source # | |
type Rep RedshiftDatabaseCredentials Source # | |
Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials type Rep RedshiftDatabaseCredentials = D1 ('MetaData "RedshiftDatabaseCredentials" "Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RedshiftDatabaseCredentials'" 'PrefixI 'True) (S1 ('MetaSel ('Just "username") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "password") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))) |
newRedshiftDatabaseCredentials Source #
:: Text | |
-> Text | |
-> RedshiftDatabaseCredentials |
Create a value of RedshiftDatabaseCredentials
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:username:RedshiftDatabaseCredentials'
, redshiftDatabaseCredentials_username
- Undocumented member.
$sel:password:RedshiftDatabaseCredentials'
, redshiftDatabaseCredentials_password
- Undocumented member.
RedshiftMetadata
data RedshiftMetadata Source #
Describes the DataSource
details specific to Amazon Redshift.
See: newRedshiftMetadata
smart constructor.
Instances
newRedshiftMetadata :: RedshiftMetadata Source #
Create a value of RedshiftMetadata
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:selectSqlQuery:RedshiftMetadata'
, redshiftMetadata_selectSqlQuery
- The SQL query that is specified during CreateDataSourceFromRedshift.
Returns only if Verbose
is true in GetDataSourceInput.
$sel:redshiftDatabase:RedshiftMetadata'
, redshiftMetadata_redshiftDatabase
- Undocumented member.
$sel:databaseUserName:RedshiftMetadata'
, redshiftMetadata_databaseUserName
- Undocumented member.
S3DataSpec
data S3DataSpec Source #
Describes the data specification of a DataSource
.
See: newS3DataSpec
smart constructor.
Instances
Create a value of S3DataSpec
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:dataSchema:S3DataSpec'
, s3DataSpec_dataSchema
- A JSON string that represents the schema for an Amazon S3 DataSource
.
The DataSchema
defines the structure of the observation data in the
data file(s) referenced in the DataSource
.
You must provide either the DataSchema
or the DataSchemaLocationS3
.
Define your DataSchema
as a series of key-value pairs. attributes
and excludedVariableNames
have an array of key-value pairs for their
value. Use the following format to define your DataSchema
.
{ "version": "1.0",
"recordAnnotationFieldName": "F1",
"recordWeightFieldName": "F2",
"targetFieldName": "F3",
"dataFormat": "CSV",
"dataFileContainsHeader": true,
"attributes": [
{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],
"excludedVariableNames": [ "F6" ] }
$sel:dataSchemaLocationS3:S3DataSpec'
, s3DataSpec_dataSchemaLocationS3
- Describes the schema location in Amazon S3. You must provide either the
DataSchema
or the DataSchemaLocationS3
.
$sel:dataRearrangement:S3DataSpec'
, s3DataSpec_dataRearrangement
- A JSON string that represents the splitting and rearrangement processing
to be applied to a DataSource
. If the DataRearrangement
parameter is
not provided, all of the input data is used to create the Datasource
.
There are multiple parameters that control what data is used to create a datasource:
percentBegin
Use
percentBegin
to indicate the beginning of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.percentEnd
Use
percentEnd
to indicate the end of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.complement
The
complement
parameter instructs Amazon ML to use the data that is not included in the range ofpercentBegin
topercentEnd
to create a datasource. Thecomplement
parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values forpercentBegin
andpercentEnd
, along with thecomplement
parameter.For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.
Datasource for evaluation:
{"splitting":{"percentBegin":0, "percentEnd":25}}
Datasource for training:
{"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}
strategy
To change how Amazon ML splits the data for a datasource, use the
strategy
parameter.The default value for the
strategy
parameter issequential
, meaning that Amazon ML takes all of the data records between thepercentBegin
andpercentEnd
parameters for the datasource, in the order that the records appear in the input data.The following two
DataRearrangement
lines are examples of sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}
To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the
strategy
parameter torandom
and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number betweenpercentBegin
andpercentEnd
. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.The following two
DataRearrangement
lines are examples of non-sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
$sel:dataLocationS3:S3DataSpec'
, s3DataSpec_dataLocationS3
- The location of the data file(s) used by a DataSource
. The URI
specifies a data file or an Amazon Simple Storage Service (Amazon S3)
directory or bucket containing data files.
Tag
A custom key-value pair associated with an ML object, such as an ML model.
See: newTag
smart constructor.
Instances
Eq Tag Source # | |
Read Tag Source # | |
Show Tag Source # | |
Generic Tag Source # | |
NFData Tag Source # | |
Defined in Amazonka.MachineLearning.Types.Tag | |
Hashable Tag Source # | |
Defined in Amazonka.MachineLearning.Types.Tag | |
ToJSON Tag Source # | |
Defined in Amazonka.MachineLearning.Types.Tag | |
FromJSON Tag Source # | |
type Rep Tag Source # | |
Defined in Amazonka.MachineLearning.Types.Tag type Rep Tag = D1 ('MetaData "Tag" "Amazonka.MachineLearning.Types.Tag" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "Tag'" 'PrefixI 'True) (S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "key") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) |
Create a value of Tag
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:value:Tag'
, tag_value
- An optional string, typically used to describe or define the tag. Valid
characters include Unicode letters, digits, white space, _, ., /, =, +,
-, %, and @.
$sel:key:Tag'
, tag_key
- A unique identifier for the tag. Valid characters include Unicode
letters, digits, white space, _, ., /, =, +, -, %, and @.