libZSservicesZSamazonka-mlZSamazonka-ml
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.MachineLearning

Description

Derived from API version 2014-12-12 of the AWS service descriptions, licensed under Apache 2.0.

Definition of the public APIs exposed by Amazon Machine Learning

Synopsis

Service Configuration

defaultService :: Service Source #

API version 2014-12-12 of the Amazon Machine Learning SDK configuration.

Errors

Error matchers are designed for use with the functions provided by Control.Exception.Lens. This allows catching (and rethrowing) service specific errors returned by MachineLearning.

InvalidTagException

_InvalidTagException :: AsError a => Getting (First ServiceError) a ServiceError Source #

Prism for InvalidTagException' errors.

InternalServerException

_InternalServerException :: AsError a => Getting (First ServiceError) a ServiceError Source #

An error on the server occurred when trying to process a request.

InvalidInputException

_InvalidInputException :: AsError a => Getting (First ServiceError) a ServiceError Source #

An error on the client occurred. Typically, the cause is an invalid input value.

IdempotentParameterMismatchException

_IdempotentParameterMismatchException :: AsError a => Getting (First ServiceError) a ServiceError Source #

A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.

TagLimitExceededException

_TagLimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError Source #

Prism for TagLimitExceededException' errors.

PredictorNotMountedException

_PredictorNotMountedException :: AsError a => Getting (First ServiceError) a ServiceError Source #

The exception is thrown when a predict request is made to an unmounted MLModel.

ResourceNotFoundException

_ResourceNotFoundException :: AsError a => Getting (First ServiceError) a ServiceError Source #

A specified resource cannot be located.

LimitExceededException

_LimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError Source #

The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as DataSource.

Waiters

Waiters poll by repeatedly sending a request until some remote success condition configured by the Wait specification is fulfilled. The Wait specification determines how many attempts should be made, in addition to delay and retry strategies.

MLModelAvailable

newMLModelAvailable :: Wait DescribeMLModels Source #

Polls DescribeMLModels every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

BatchPredictionAvailable

newBatchPredictionAvailable :: Wait DescribeBatchPredictions Source #

Polls DescribeBatchPredictions every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

DataSourceAvailable

newDataSourceAvailable :: Wait DescribeDataSources Source #

Polls DescribeDataSources every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

EvaluationAvailable

newEvaluationAvailable :: Wait DescribeEvaluations Source #

Polls DescribeEvaluations every 30 seconds until a successful state is reached. An error is returned after 60 failed checks.

Operations

Some AWS operations return results that are incomplete and require subsequent requests in order to obtain the entire result set. The process of sending subsequent requests to continue where a previous request left off is called pagination. For example, the ListObjects operation of Amazon S3 returns up to 1000 objects at a time, and you must send subsequent requests with the appropriate Marker in order to retrieve the next page of results.

Operations that have an AWSPager instance can transparently perform subsequent requests, correctly setting Markers and other request facets to iterate through the entire result set of a truncated API operation. Operations which support this have an additional note in the documentation.

Many operations have the ability to filter results on the server side. See the individual operation parameters for details.

UpdateDataSource

data UpdateDataSource Source #

See: newUpdateDataSource smart constructor.

Instances

Instances details
Eq UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Read UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Show UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Generic UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Associated Types

type Rep UpdateDataSource :: Type -> Type #

NFData UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Methods

rnf :: UpdateDataSource -> () #

Hashable UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

ToJSON UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

AWSRequest UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Associated Types

type AWSResponse UpdateDataSource #

ToHeaders UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

ToPath UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

ToQuery UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

type Rep UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

type Rep UpdateDataSource = D1 ('MetaData "UpdateDataSource" "Amazonka.MachineLearning.UpdateDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateDataSource'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "dataSourceName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse UpdateDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

newUpdateDataSource Source #

Create a value of UpdateDataSource with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:UpdateDataSource', updateDataSource_dataSourceId - The ID assigned to the DataSource during creation.

$sel:dataSourceName:UpdateDataSource', updateDataSource_dataSourceName - A new user-supplied name or description of the DataSource that will replace the current description.

data UpdateDataSourceResponse Source #

Represents the output of an UpdateDataSource operation.

You can see the updated content by using the GetBatchPrediction operation.

See: newUpdateDataSourceResponse smart constructor.

Instances

Instances details
Eq UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Read UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Show UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Generic UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

Associated Types

type Rep UpdateDataSourceResponse :: Type -> Type #

NFData UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

type Rep UpdateDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateDataSource

type Rep UpdateDataSourceResponse = D1 ('MetaData "UpdateDataSourceResponse" "Amazonka.MachineLearning.UpdateDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateDataSourceResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newUpdateDataSourceResponse Source #

Create a value of UpdateDataSourceResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:UpdateDataSource', updateDataSourceResponse_dataSourceId - The ID assigned to the DataSource during creation. This value should be identical to the value of the DataSourceID in the request.

$sel:httpStatus:UpdateDataSourceResponse', updateDataSourceResponse_httpStatus - The response's http status code.

DeleteDataSource

data DeleteDataSource Source #

See: newDeleteDataSource smart constructor.

Constructors

DeleteDataSource' Text 

Instances

Instances details
Eq DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Read DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Show DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Generic DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Associated Types

type Rep DeleteDataSource :: Type -> Type #

NFData DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Methods

rnf :: DeleteDataSource -> () #

Hashable DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

ToJSON DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

AWSRequest DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Associated Types

type AWSResponse DeleteDataSource #

ToHeaders DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

ToPath DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

ToQuery DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

type Rep DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

type Rep DeleteDataSource = D1 ('MetaData "DeleteDataSource" "Amazonka.MachineLearning.DeleteDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteDataSource'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DeleteDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

newDeleteDataSource Source #

Create a value of DeleteDataSource with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:DeleteDataSource', deleteDataSource_dataSourceId - A user-supplied ID that uniquely identifies the DataSource.

data DeleteDataSourceResponse Source #

Represents the output of a DeleteDataSource operation.

See: newDeleteDataSourceResponse smart constructor.

Instances

Instances details
Eq DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Read DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Show DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Generic DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

Associated Types

type Rep DeleteDataSourceResponse :: Type -> Type #

NFData DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

type Rep DeleteDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteDataSource

type Rep DeleteDataSourceResponse = D1 ('MetaData "DeleteDataSourceResponse" "Amazonka.MachineLearning.DeleteDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteDataSourceResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newDeleteDataSourceResponse Source #

Create a value of DeleteDataSourceResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:DeleteDataSource', deleteDataSourceResponse_dataSourceId - A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the DataSourceID in the request.

$sel:httpStatus:DeleteDataSourceResponse', deleteDataSourceResponse_httpStatus - The response's http status code.

DescribeTags

data DescribeTags Source #

See: newDescribeTags smart constructor.

Instances

Instances details
Eq DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Read DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Show DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Generic DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Associated Types

type Rep DescribeTags :: Type -> Type #

NFData DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Methods

rnf :: DescribeTags -> () #

Hashable DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

ToJSON DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

AWSRequest DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Associated Types

type AWSResponse DescribeTags #

ToHeaders DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

ToPath DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

ToQuery DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

type Rep DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

type Rep DescribeTags = D1 ('MetaData "DescribeTags" "Amazonka.MachineLearning.DescribeTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeTags'" 'PrefixI 'True) (S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 TaggableResourceType)))
type AWSResponse DescribeTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

newDescribeTags Source #

Create a value of DescribeTags with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:resourceId:DescribeTags', describeTags_resourceId - The ID of the ML object. For example, exampleModelId.

$sel:resourceType:DescribeTags', describeTags_resourceType - The type of the ML object.

data DescribeTagsResponse Source #

Amazon ML returns the following elements.

See: newDescribeTagsResponse smart constructor.

Instances

Instances details
Eq DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Read DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Show DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Generic DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Associated Types

type Rep DescribeTagsResponse :: Type -> Type #

NFData DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

Methods

rnf :: DescribeTagsResponse -> () #

type Rep DescribeTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeTags

type Rep DescribeTagsResponse = D1 ('MetaData "DescribeTagsResponse" "Amazonka.MachineLearning.DescribeTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeTagsResponse'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe TaggableResourceType))) :*: (S1 ('MetaSel ('Just "tags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Tag])) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeTagsResponse Source #

Create a value of DescribeTagsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:resourceId:DescribeTags', describeTagsResponse_resourceId - The ID of the tagged ML object.

$sel:resourceType:DescribeTags', describeTagsResponse_resourceType - The type of the tagged ML object.

$sel:tags:DescribeTagsResponse', describeTagsResponse_tags - A list of tags associated with the ML object.

$sel:httpStatus:DescribeTagsResponse', describeTagsResponse_httpStatus - The response's http status code.

CreateDataSourceFromRedshift

data CreateDataSourceFromRedshift Source #

See: newCreateDataSourceFromRedshift smart constructor.

Instances

Instances details
Eq CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Read CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Show CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Generic CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Associated Types

type Rep CreateDataSourceFromRedshift :: Type -> Type #

NFData CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Hashable CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

ToJSON CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

AWSRequest CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

ToHeaders CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

ToPath CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

ToQuery CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

type Rep CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

type Rep CreateDataSourceFromRedshift = D1 ('MetaData "CreateDataSourceFromRedshift" "Amazonka.MachineLearning.CreateDataSourceFromRedshift" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromRedshift'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "dataSourceName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "computeStatistics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool))) :*: (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: (S1 ('MetaSel ('Just "dataSpec") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 RedshiftDataSpec) :*: S1 ('MetaSel ('Just "roleARN") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))
type AWSResponse CreateDataSourceFromRedshift Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

newCreateDataSourceFromRedshift Source #

Create a value of CreateDataSourceFromRedshift with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceName:CreateDataSourceFromRedshift', createDataSourceFromRedshift_dataSourceName - A user-supplied name or description of the DataSource.

$sel:computeStatistics:CreateDataSourceFromRedshift', createDataSourceFromRedshift_computeStatistics - The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the DataSource needs to be used for MLModel training.

$sel:dataSourceId:CreateDataSourceFromRedshift', createDataSourceFromRedshift_dataSourceId - A user-supplied ID that uniquely identifies the DataSource.

$sel:dataSpec:CreateDataSourceFromRedshift', createDataSourceFromRedshift_dataSpec - The data specification of an Amazon Redshift DataSource:

  • DatabaseInformation -

    • DatabaseName - The name of the Amazon Redshift database.
    • ClusterIdentifier - The unique ID for the Amazon Redshift cluster.
  • DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
  • SelectSqlQuery - The query that is used to retrieve the observation data for the Datasource.
  • S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the SelectSqlQuery query is stored in this location.
  • DataSchemaUri - The Amazon S3 location of the DataSchema.
  • DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.
  • DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the DataSource.

    Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"

$sel:roleARN:CreateDataSourceFromRedshift', createDataSourceFromRedshift_roleARN - A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:

  • A security group to allow Amazon ML to execute the SelectSqlQuery query on an Amazon Redshift cluster
  • An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the S3StagingLocation

data CreateDataSourceFromRedshiftResponse Source #

Represents the output of a CreateDataSourceFromRedshift operation, and is an acknowledgement that Amazon ML received the request.

The CreateDataSourceFromRedshift operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter.

See: newCreateDataSourceFromRedshiftResponse smart constructor.

Instances

Instances details
Eq CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Read CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Show CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

Generic CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

NFData CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

type Rep CreateDataSourceFromRedshiftResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRedshift

type Rep CreateDataSourceFromRedshiftResponse = D1 ('MetaData "CreateDataSourceFromRedshiftResponse" "Amazonka.MachineLearning.CreateDataSourceFromRedshift" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromRedshiftResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateDataSourceFromRedshiftResponse Source #

Create a value of CreateDataSourceFromRedshiftResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:CreateDataSourceFromRedshift', createDataSourceFromRedshiftResponse_dataSourceId - A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the DataSourceID in the request.

$sel:httpStatus:CreateDataSourceFromRedshiftResponse', createDataSourceFromRedshiftResponse_httpStatus - The response's http status code.

CreateDataSourceFromS3

data CreateDataSourceFromS3 Source #

See: newCreateDataSourceFromS3 smart constructor.

Instances

Instances details
Eq CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Read CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Show CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Generic CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Associated Types

type Rep CreateDataSourceFromS3 :: Type -> Type #

NFData CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Methods

rnf :: CreateDataSourceFromS3 -> () #

Hashable CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

ToJSON CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

AWSRequest CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Associated Types

type AWSResponse CreateDataSourceFromS3 #

ToHeaders CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

ToPath CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

ToQuery CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

type Rep CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

type Rep CreateDataSourceFromS3 = D1 ('MetaData "CreateDataSourceFromS3" "Amazonka.MachineLearning.CreateDataSourceFromS3" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromS3'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "dataSourceName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "computeStatistics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool))) :*: (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "dataSpec") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 S3DataSpec))))
type AWSResponse CreateDataSourceFromS3 Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

newCreateDataSourceFromS3 Source #

Create a value of CreateDataSourceFromS3 with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceName:CreateDataSourceFromS3', createDataSourceFromS3_dataSourceName - A user-supplied name or description of the DataSource.

$sel:computeStatistics:CreateDataSourceFromS3', createDataSourceFromS3_computeStatistics - The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the @DataSource needs to be used for MLModel@ training.

$sel:dataSourceId:CreateDataSourceFromS3', createDataSourceFromS3_dataSourceId - A user-supplied identifier that uniquely identifies the DataSource.

$sel:dataSpec:CreateDataSourceFromS3', createDataSourceFromS3_dataSpec - The data specification of a DataSource:

  • DataLocationS3 - The Amazon S3 location of the observation data.
  • DataSchemaLocationS3 - The Amazon S3 location of the DataSchema.
  • DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.
  • DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the Datasource.

    Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"

data CreateDataSourceFromS3Response Source #

Represents the output of a CreateDataSourceFromS3 operation, and is an acknowledgement that Amazon ML received the request.

The CreateDataSourceFromS3 operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter.

See: newCreateDataSourceFromS3Response smart constructor.

Instances

Instances details
Eq CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Read CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Show CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Generic CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

Associated Types

type Rep CreateDataSourceFromS3Response :: Type -> Type #

NFData CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

type Rep CreateDataSourceFromS3Response Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromS3

type Rep CreateDataSourceFromS3Response = D1 ('MetaData "CreateDataSourceFromS3Response" "Amazonka.MachineLearning.CreateDataSourceFromS3" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromS3Response'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateDataSourceFromS3Response Source #

Create a value of CreateDataSourceFromS3Response with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:CreateDataSourceFromS3', createDataSourceFromS3Response_dataSourceId - A user-supplied ID that uniquely identifies the DataSource. This value should be identical to the value of the DataSourceID in the request.

$sel:httpStatus:CreateDataSourceFromS3Response', createDataSourceFromS3Response_httpStatus - The response's http status code.

CreateMLModel

data CreateMLModel Source #

See: newCreateMLModel smart constructor.

Instances

Instances details
Eq CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Read CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Show CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Generic CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Associated Types

type Rep CreateMLModel :: Type -> Type #

NFData CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Methods

rnf :: CreateMLModel -> () #

Hashable CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

ToJSON CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

AWSRequest CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Associated Types

type AWSResponse CreateMLModel #

ToHeaders CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

ToPath CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

ToQuery CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

type Rep CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

type AWSResponse CreateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

newCreateMLModel Source #

Create a value of CreateMLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:recipe:CreateMLModel', createMLModel_recipe - The data recipe for creating the MLModel. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

$sel:recipeUri:CreateMLModel', createMLModel_recipeUri - The Amazon Simple Storage Service (Amazon S3) location and file name that contains the MLModel recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.

$sel:mLModelName:CreateMLModel', createMLModel_mLModelName - A user-supplied name or description of the MLModel.

$sel:parameters:CreateMLModel', createMLModel_parameters - A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs.

The following is the current set of training parameters:

  • sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.

    The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.

  • sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10.
  • sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none. We strongly recommend that you shuffle your data.
  • sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.

  • sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.

$sel:mLModelId:CreateMLModel', createMLModel_mLModelId - A user-supplied ID that uniquely identifies the MLModel.

$sel:mLModelType:CreateMLModel', createMLModel_mLModelType - The category of supervised learning that this MLModel will address. Choose from the following types:

  • Choose REGRESSION if the MLModel will be used to predict a numeric value.
  • Choose BINARY if the MLModel result has two possible values.
  • Choose MULTICLASS if the MLModel result has a limited number of values.

For more information, see the Amazon Machine Learning Developer Guide.

$sel:trainingDataSourceId:CreateMLModel', createMLModel_trainingDataSourceId - The DataSource that points to the training data.

data CreateMLModelResponse Source #

Represents the output of a CreateMLModel operation, and is an acknowledgement that Amazon ML received the request.

The CreateMLModel operation is asynchronous. You can poll for status updates by using the GetMLModel operation and checking the Status parameter.

See: newCreateMLModelResponse smart constructor.

Instances

Instances details
Eq CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Read CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Show CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Generic CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Associated Types

type Rep CreateMLModelResponse :: Type -> Type #

NFData CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

Methods

rnf :: CreateMLModelResponse -> () #

type Rep CreateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateMLModel

type Rep CreateMLModelResponse = D1 ('MetaData "CreateMLModelResponse" "Amazonka.MachineLearning.CreateMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateMLModelResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateMLModelResponse Source #

Create a value of CreateMLModelResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:CreateMLModel', createMLModelResponse_mLModelId - A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.

$sel:httpStatus:CreateMLModelResponse', createMLModelResponse_httpStatus - The response's http status code.

DeleteTags

data DeleteTags Source #

See: newDeleteTags smart constructor.

Instances

Instances details
Eq DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Read DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Show DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Generic DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Associated Types

type Rep DeleteTags :: Type -> Type #

NFData DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Methods

rnf :: DeleteTags -> () #

Hashable DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

ToJSON DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

AWSRequest DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Associated Types

type AWSResponse DeleteTags #

ToHeaders DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Methods

toHeaders :: DeleteTags -> [Header] #

ToPath DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

ToQuery DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

type Rep DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

type Rep DeleteTags = D1 ('MetaData "DeleteTags" "Amazonka.MachineLearning.DeleteTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteTags'" 'PrefixI 'True) (S1 ('MetaSel ('Just "tagKeys") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 [Text]) :*: (S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 TaggableResourceType))))
type AWSResponse DeleteTags Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

newDeleteTags Source #

Create a value of DeleteTags with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:tagKeys:DeleteTags', deleteTags_tagKeys - One or more tags to delete.

$sel:resourceId:DeleteTags', deleteTags_resourceId - The ID of the tagged ML object. For example, exampleModelId.

$sel:resourceType:DeleteTags', deleteTags_resourceType - The type of the tagged ML object.

data DeleteTagsResponse Source #

Amazon ML returns the following elements.

See: newDeleteTagsResponse smart constructor.

Instances

Instances details
Eq DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Read DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Show DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Generic DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Associated Types

type Rep DeleteTagsResponse :: Type -> Type #

NFData DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

Methods

rnf :: DeleteTagsResponse -> () #

type Rep DeleteTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteTags

type Rep DeleteTagsResponse = D1 ('MetaData "DeleteTagsResponse" "Amazonka.MachineLearning.DeleteTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteTagsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe TaggableResourceType)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDeleteTagsResponse Source #

Create a value of DeleteTagsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:resourceId:DeleteTags', deleteTagsResponse_resourceId - The ID of the ML object from which tags were deleted.

$sel:resourceType:DeleteTags', deleteTagsResponse_resourceType - The type of the ML object from which tags were deleted.

$sel:httpStatus:DeleteTagsResponse', deleteTagsResponse_httpStatus - The response's http status code.

DeleteBatchPrediction

data DeleteBatchPrediction Source #

See: newDeleteBatchPrediction smart constructor.

Instances

Instances details
Eq DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Read DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Show DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Generic DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Associated Types

type Rep DeleteBatchPrediction :: Type -> Type #

NFData DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Methods

rnf :: DeleteBatchPrediction -> () #

Hashable DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

ToJSON DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

AWSRequest DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Associated Types

type AWSResponse DeleteBatchPrediction #

ToHeaders DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

ToPath DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

ToQuery DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

type Rep DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

type Rep DeleteBatchPrediction = D1 ('MetaData "DeleteBatchPrediction" "Amazonka.MachineLearning.DeleteBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteBatchPrediction'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DeleteBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

newDeleteBatchPrediction Source #

Create a value of DeleteBatchPrediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:DeleteBatchPrediction', deleteBatchPrediction_batchPredictionId - A user-supplied ID that uniquely identifies the BatchPrediction.

data DeleteBatchPredictionResponse Source #

Represents the output of a DeleteBatchPrediction operation.

You can use the GetBatchPrediction operation and check the value of the Status parameter to see whether a BatchPrediction is marked as DELETED.

See: newDeleteBatchPredictionResponse smart constructor.

Instances

Instances details
Eq DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Read DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Show DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Generic DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

Associated Types

type Rep DeleteBatchPredictionResponse :: Type -> Type #

NFData DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

type Rep DeleteBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteBatchPrediction

type Rep DeleteBatchPredictionResponse = D1 ('MetaData "DeleteBatchPredictionResponse" "Amazonka.MachineLearning.DeleteBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteBatchPredictionResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newDeleteBatchPredictionResponse Source #

Create a value of DeleteBatchPredictionResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:DeleteBatchPrediction', deleteBatchPredictionResponse_batchPredictionId - A user-supplied ID that uniquely identifies the BatchPrediction. This value should be identical to the value of the BatchPredictionID in the request.

$sel:httpStatus:DeleteBatchPredictionResponse', deleteBatchPredictionResponse_httpStatus - The response's http status code.

UpdateBatchPrediction

data UpdateBatchPrediction Source #

See: newUpdateBatchPrediction smart constructor.

Instances

Instances details
Eq UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Read UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Show UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Generic UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Associated Types

type Rep UpdateBatchPrediction :: Type -> Type #

NFData UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Methods

rnf :: UpdateBatchPrediction -> () #

Hashable UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

ToJSON UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

AWSRequest UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Associated Types

type AWSResponse UpdateBatchPrediction #

ToHeaders UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

ToPath UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

ToQuery UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

type Rep UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

type Rep UpdateBatchPrediction = D1 ('MetaData "UpdateBatchPrediction" "Amazonka.MachineLearning.UpdateBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateBatchPrediction'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "batchPredictionName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse UpdateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

newUpdateBatchPrediction Source #

Create a value of UpdateBatchPrediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:UpdateBatchPrediction', updateBatchPrediction_batchPredictionId - The ID assigned to the BatchPrediction during creation.

$sel:batchPredictionName:UpdateBatchPrediction', updateBatchPrediction_batchPredictionName - A new user-supplied name or description of the BatchPrediction.

data UpdateBatchPredictionResponse Source #

Represents the output of an UpdateBatchPrediction operation.

You can see the updated content by using the GetBatchPrediction operation.

See: newUpdateBatchPredictionResponse smart constructor.

Instances

Instances details
Eq UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Read UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Show UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Generic UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

Associated Types

type Rep UpdateBatchPredictionResponse :: Type -> Type #

NFData UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

type Rep UpdateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateBatchPrediction

type Rep UpdateBatchPredictionResponse = D1 ('MetaData "UpdateBatchPredictionResponse" "Amazonka.MachineLearning.UpdateBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateBatchPredictionResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newUpdateBatchPredictionResponse Source #

Create a value of UpdateBatchPredictionResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:UpdateBatchPrediction', updateBatchPredictionResponse_batchPredictionId - The ID assigned to the BatchPrediction during creation. This value should be identical to the value of the BatchPredictionId in the request.

$sel:httpStatus:UpdateBatchPredictionResponse', updateBatchPredictionResponse_httpStatus - The response's http status code.

GetMLModel

data GetMLModel Source #

See: newGetMLModel smart constructor.

Constructors

GetMLModel' (Maybe Bool) Text 

Instances

Instances details
Eq GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Read GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Show GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Generic GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Associated Types

type Rep GetMLModel :: Type -> Type #

NFData GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Methods

rnf :: GetMLModel -> () #

Hashable GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

ToJSON GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

AWSRequest GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Associated Types

type AWSResponse GetMLModel #

ToHeaders GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Methods

toHeaders :: GetMLModel -> [Header] #

ToPath GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

ToQuery GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

type Rep GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

type Rep GetMLModel = D1 ('MetaData "GetMLModel" "Amazonka.MachineLearning.GetMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetMLModel'" 'PrefixI 'True) (S1 ('MetaSel ('Just "verbose") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse GetMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

newGetMLModel Source #

Create a value of GetMLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:verbose:GetMLModel', getMLModel_verbose - Specifies whether the GetMLModel operation should return Recipe.

If true, Recipe is returned.

If false, Recipe is not returned.

$sel:mLModelId:GetMLModel', getMLModel_mLModelId - The ID assigned to the MLModel at creation.

data GetMLModelResponse Source #

Represents the output of a GetMLModel operation, and provides detailed information about a MLModel.

See: newGetMLModelResponse smart constructor.

Instances

Instances details
Eq GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Read GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Show GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Generic GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Associated Types

type Rep GetMLModelResponse :: Type -> Type #

NFData GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

Methods

rnf :: GetMLModelResponse -> () #

type Rep GetMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetMLModel

type Rep GetMLModelResponse = D1 ('MetaData "GetMLModelResponse" "Amazonka.MachineLearning.GetMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetMLModelResponse'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "trainingParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text))) :*: (S1 ('MetaSel ('Just "scoreThresholdLastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))) :*: ((S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: (S1 ('MetaSel ('Just "recipe") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "sizeInBytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "schema") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))) :*: (((S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "scoreThreshold") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))) :*: (S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))) :*: ((S1 ('MetaSel ('Just "logUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "endpointInfo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RealtimeEndpointInfo)) :*: S1 ('MetaSel ('Just "trainingDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "mLModelType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe MLModelType)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))))))

newGetMLModelResponse Source #

Create a value of GetMLModelResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:GetMLModelResponse', getMLModelResponse_status - The current status of the MLModel. This element can have one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to describe a MLModel.
  • INPROGRESS - The request is processing.
  • FAILED - The request did not run to completion. The ML model isn't usable.
  • COMPLETED - The request completed successfully.
  • DELETED - The MLModel is marked as deleted. It isn't usable.

$sel:lastUpdatedAt:GetMLModelResponse', getMLModelResponse_lastUpdatedAt - The time of the most recent edit to the MLModel. The time is expressed in epoch time.

$sel:trainingParameters:GetMLModelResponse', getMLModelResponse_trainingParameters - A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs.

The following is the current set of training parameters:

  • sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.

    The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.

  • sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10.
  • sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none. We strongly recommend that you shuffle your data.
  • sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.

  • sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.

$sel:scoreThresholdLastUpdatedAt:GetMLModelResponse', getMLModelResponse_scoreThresholdLastUpdatedAt - The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.

$sel:createdAt:GetMLModelResponse', getMLModelResponse_createdAt - The time that the MLModel was created. The time is expressed in epoch time.

$sel:computeTime:GetMLModelResponse', getMLModelResponse_computeTime - The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the MLModel, normalized and scaled on computation resources. ComputeTime is only available if the MLModel is in the COMPLETED state.

$sel:recipe:GetMLModelResponse', getMLModelResponse_recipe - The recipe to use when training the MLModel. The Recipe provides detailed information about the observation data to use during training, and manipulations to perform on the observation data during training.

Note: This parameter is provided as part of the verbose format.

$sel:inputDataLocationS3:GetMLModelResponse', getMLModelResponse_inputDataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:mLModelId:GetMLModel', getMLModelResponse_mLModelId - The MLModel ID, which is same as the MLModelId in the request.

$sel:sizeInBytes:GetMLModelResponse', getMLModelResponse_sizeInBytes - Undocumented member.

$sel:schema:GetMLModelResponse', getMLModelResponse_schema - The schema used by all of the data files referenced by the DataSource.

Note: This parameter is provided as part of the verbose format.

$sel:startedAt:GetMLModelResponse', getMLModelResponse_startedAt - The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS. StartedAt isn't available if the MLModel is in the PENDING state.

$sel:scoreThreshold:GetMLModelResponse', getMLModelResponse_scoreThreshold - The scoring threshold is used in binary classification MLModel models. It marks the boundary between a positive prediction and a negative prediction.

Output values greater than or equal to the threshold receive a positive result from the MLModel, such as true. Output values less than the threshold receive a negative response from the MLModel, such as false.

$sel:finishedAt:GetMLModelResponse', getMLModelResponse_finishedAt - The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED or FAILED. FinishedAt is only available when the MLModel is in the COMPLETED or FAILED state.

$sel:createdByIamUser:GetMLModelResponse', getMLModelResponse_createdByIamUser - The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:GetMLModelResponse', getMLModelResponse_name - A user-supplied name or description of the MLModel.

$sel:logUri:GetMLModelResponse', getMLModelResponse_logUri - A link to the file that contains logs of the CreateMLModel operation.

$sel:endpointInfo:GetMLModelResponse', getMLModelResponse_endpointInfo - The current endpoint of the MLModel

$sel:trainingDataSourceId:GetMLModelResponse', getMLModelResponse_trainingDataSourceId - The ID of the training DataSource.

$sel:message:GetMLModelResponse', getMLModelResponse_message - A description of the most recent details about accessing the MLModel.

$sel:mLModelType:GetMLModelResponse', getMLModelResponse_mLModelType - Identifies the MLModel category. The following are the available types:

  • REGRESSION -- Produces a numeric result. For example, "What price should a house be listed at?"
  • BINARY -- Produces one of two possible results. For example, "Is this an e-commerce website?"
  • MULTICLASS -- Produces one of several possible results. For example, "Is this a HIGH, LOW or MEDIUM risk trade?"

$sel:httpStatus:GetMLModelResponse', getMLModelResponse_httpStatus - The response's http status code.

GetDataSource

data GetDataSource Source #

See: newGetDataSource smart constructor.

Constructors

GetDataSource' (Maybe Bool) Text 

Instances

Instances details
Eq GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Read GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Show GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Generic GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Associated Types

type Rep GetDataSource :: Type -> Type #

NFData GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Methods

rnf :: GetDataSource -> () #

Hashable GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

ToJSON GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

AWSRequest GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Associated Types

type AWSResponse GetDataSource #

ToHeaders GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

ToPath GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

ToQuery GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

type Rep GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

type Rep GetDataSource = D1 ('MetaData "GetDataSource" "Amazonka.MachineLearning.GetDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetDataSource'" 'PrefixI 'True) (S1 ('MetaSel ('Just "verbose") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse GetDataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

newGetDataSource Source #

Create a value of GetDataSource with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:verbose:GetDataSource', getDataSource_verbose - Specifies whether the GetDataSource operation should return DataSourceSchema.

If true, DataSourceSchema is returned.

If false, DataSourceSchema is not returned.

$sel:dataSourceId:GetDataSource', getDataSource_dataSourceId - The ID assigned to the DataSource at creation.

data GetDataSourceResponse Source #

Represents the output of a GetDataSource operation and describes a DataSource.

See: newGetDataSourceResponse smart constructor.

Instances

Instances details
Eq GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Read GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Show GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Generic GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Associated Types

type Rep GetDataSourceResponse :: Type -> Type #

NFData GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

Methods

rnf :: GetDataSourceResponse -> () #

type Rep GetDataSourceResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetDataSource

type Rep GetDataSourceResponse = D1 ('MetaData "GetDataSourceResponse" "Amazonka.MachineLearning.GetDataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetDataSourceResponse'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "numberOfFiles") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))) :*: (S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))))) :*: ((S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "rDSMetadata") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RDSMetadata))) :*: (S1 ('MetaSel ('Just "dataSizeInBytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: (S1 ('MetaSel ('Just "dataSourceSchema") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))))) :*: (((S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "logUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "dataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))) :*: ((S1 ('MetaSel ('Just "computeStatistics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "redshiftMetadata") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RedshiftMetadata)))) :*: (S1 ('MetaSel ('Just "dataRearrangement") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "roleARN") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))))))

newGetDataSourceResponse Source #

Create a value of GetDataSourceResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:GetDataSourceResponse', getDataSourceResponse_status - The current status of the DataSource. This element can have one of the following values:

  • PENDING - Amazon ML submitted a request to create a DataSource.
  • INPROGRESS - The creation process is underway.
  • FAILED - The request to create a DataSource did not run to completion. It is not usable.
  • COMPLETED - The creation process completed successfully.
  • DELETED - The DataSource is marked as deleted. It is not usable.

$sel:numberOfFiles:GetDataSourceResponse', getDataSourceResponse_numberOfFiles - The number of data files referenced by the DataSource.

$sel:lastUpdatedAt:GetDataSourceResponse', getDataSourceResponse_lastUpdatedAt - The time of the most recent edit to the DataSource. The time is expressed in epoch time.

$sel:createdAt:GetDataSourceResponse', getDataSourceResponse_createdAt - The time that the DataSource was created. The time is expressed in epoch time.

$sel:computeTime:GetDataSourceResponse', getDataSourceResponse_computeTime - The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the DataSource, normalized and scaled on computation resources. ComputeTime is only available if the DataSource is in the COMPLETED state and the ComputeStatistics is set to true.

$sel:dataSourceId:GetDataSource', getDataSourceResponse_dataSourceId - The ID assigned to the DataSource at creation. This value should be identical to the value of the DataSourceId in the request.

$sel:rDSMetadata:GetDataSourceResponse', getDataSourceResponse_rDSMetadata - Undocumented member.

$sel:dataSizeInBytes:GetDataSourceResponse', getDataSourceResponse_dataSizeInBytes - The total size of observations in the data files.

$sel:dataSourceSchema:GetDataSourceResponse', getDataSourceResponse_dataSourceSchema - The schema used by all of the data files of this DataSource.

Note: This parameter is provided as part of the verbose format.

$sel:startedAt:GetDataSourceResponse', getDataSourceResponse_startedAt - The epoch time when Amazon Machine Learning marked the DataSource as INPROGRESS. StartedAt isn't available if the DataSource is in the PENDING state.

$sel:finishedAt:GetDataSourceResponse', getDataSourceResponse_finishedAt - The epoch time when Amazon Machine Learning marked the DataSource as COMPLETED or FAILED. FinishedAt is only available when the DataSource is in the COMPLETED or FAILED state.

$sel:createdByIamUser:GetDataSourceResponse', getDataSourceResponse_createdByIamUser - The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:GetDataSourceResponse', getDataSourceResponse_name - A user-supplied name or description of the DataSource.

$sel:logUri:GetDataSourceResponse', getDataSourceResponse_logUri - A link to the file containing logs of CreateDataSourceFrom* operations.

$sel:dataLocationS3:GetDataSourceResponse', getDataSourceResponse_dataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:computeStatistics:GetDataSourceResponse', getDataSourceResponse_computeStatistics - The parameter is true if statistics need to be generated from the observation data.

$sel:message:GetDataSourceResponse', getDataSourceResponse_message - The user-supplied description of the most recent details about creating the DataSource.

$sel:redshiftMetadata:GetDataSourceResponse', getDataSourceResponse_redshiftMetadata - Undocumented member.

$sel:dataRearrangement:GetDataSourceResponse', getDataSourceResponse_dataRearrangement - A JSON string that represents the splitting and rearrangement requirement used when this DataSource was created.

$sel:roleARN:GetDataSourceResponse', getDataSourceResponse_roleARN - Undocumented member.

$sel:httpStatus:GetDataSourceResponse', getDataSourceResponse_httpStatus - The response's http status code.

UpdateEvaluation

data UpdateEvaluation Source #

See: newUpdateEvaluation smart constructor.

Instances

Instances details
Eq UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Read UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Show UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Generic UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Associated Types

type Rep UpdateEvaluation :: Type -> Type #

NFData UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Methods

rnf :: UpdateEvaluation -> () #

Hashable UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

ToJSON UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

AWSRequest UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Associated Types

type AWSResponse UpdateEvaluation #

ToHeaders UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

ToPath UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

ToQuery UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

type Rep UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

type Rep UpdateEvaluation = D1 ('MetaData "UpdateEvaluation" "Amazonka.MachineLearning.UpdateEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateEvaluation'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "evaluationName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse UpdateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

newUpdateEvaluation Source #

Create a value of UpdateEvaluation with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:UpdateEvaluation', updateEvaluation_evaluationId - The ID assigned to the Evaluation during creation.

$sel:evaluationName:UpdateEvaluation', updateEvaluation_evaluationName - A new user-supplied name or description of the Evaluation that will replace the current content.

data UpdateEvaluationResponse Source #

Represents the output of an UpdateEvaluation operation.

You can see the updated content by using the GetEvaluation operation.

See: newUpdateEvaluationResponse smart constructor.

Instances

Instances details
Eq UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Read UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Show UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Generic UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

Associated Types

type Rep UpdateEvaluationResponse :: Type -> Type #

NFData UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

type Rep UpdateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateEvaluation

type Rep UpdateEvaluationResponse = D1 ('MetaData "UpdateEvaluationResponse" "Amazonka.MachineLearning.UpdateEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateEvaluationResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newUpdateEvaluationResponse Source #

Create a value of UpdateEvaluationResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:UpdateEvaluation', updateEvaluationResponse_evaluationId - The ID assigned to the Evaluation during creation. This value should be identical to the value of the Evaluation in the request.

$sel:httpStatus:UpdateEvaluationResponse', updateEvaluationResponse_httpStatus - The response's http status code.

DeleteEvaluation

data DeleteEvaluation Source #

See: newDeleteEvaluation smart constructor.

Constructors

DeleteEvaluation' Text 

Instances

Instances details
Eq DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Read DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Show DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Generic DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Associated Types

type Rep DeleteEvaluation :: Type -> Type #

NFData DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Methods

rnf :: DeleteEvaluation -> () #

Hashable DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

ToJSON DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

AWSRequest DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Associated Types

type AWSResponse DeleteEvaluation #

ToHeaders DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

ToPath DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

ToQuery DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

type Rep DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

type Rep DeleteEvaluation = D1 ('MetaData "DeleteEvaluation" "Amazonka.MachineLearning.DeleteEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteEvaluation'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DeleteEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

newDeleteEvaluation Source #

Create a value of DeleteEvaluation with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:DeleteEvaluation', deleteEvaluation_evaluationId - A user-supplied ID that uniquely identifies the Evaluation to delete.

data DeleteEvaluationResponse Source #

Represents the output of a DeleteEvaluation operation. The output indicates that Amazon Machine Learning (Amazon ML) received the request.

You can use the GetEvaluation operation and check the value of the Status parameter to see whether an Evaluation is marked as DELETED.

See: newDeleteEvaluationResponse smart constructor.

Instances

Instances details
Eq DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Read DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Show DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Generic DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

Associated Types

type Rep DeleteEvaluationResponse :: Type -> Type #

NFData DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

type Rep DeleteEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteEvaluation

type Rep DeleteEvaluationResponse = D1 ('MetaData "DeleteEvaluationResponse" "Amazonka.MachineLearning.DeleteEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteEvaluationResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newDeleteEvaluationResponse Source #

Create a value of DeleteEvaluationResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:DeleteEvaluation', deleteEvaluationResponse_evaluationId - A user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the EvaluationId in the request.

$sel:httpStatus:DeleteEvaluationResponse', deleteEvaluationResponse_httpStatus - The response's http status code.

DeleteMLModel

data DeleteMLModel Source #

See: newDeleteMLModel smart constructor.

Constructors

DeleteMLModel' Text 

Instances

Instances details
Eq DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Read DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Show DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Generic DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Associated Types

type Rep DeleteMLModel :: Type -> Type #

NFData DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Methods

rnf :: DeleteMLModel -> () #

Hashable DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

ToJSON DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

AWSRequest DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Associated Types

type AWSResponse DeleteMLModel #

ToHeaders DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

ToPath DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

ToQuery DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

type Rep DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

type Rep DeleteMLModel = D1 ('MetaData "DeleteMLModel" "Amazonka.MachineLearning.DeleteMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteMLModel'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DeleteMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

newDeleteMLModel Source #

Create a value of DeleteMLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:DeleteMLModel', deleteMLModel_mLModelId - A user-supplied ID that uniquely identifies the MLModel.

data DeleteMLModelResponse Source #

Represents the output of a DeleteMLModel operation.

You can use the GetMLModel operation and check the value of the Status parameter to see whether an MLModel is marked as DELETED.

See: newDeleteMLModelResponse smart constructor.

Instances

Instances details
Eq DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Read DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Show DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Generic DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Associated Types

type Rep DeleteMLModelResponse :: Type -> Type #

NFData DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

Methods

rnf :: DeleteMLModelResponse -> () #

type Rep DeleteMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteMLModel

type Rep DeleteMLModelResponse = D1 ('MetaData "DeleteMLModelResponse" "Amazonka.MachineLearning.DeleteMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteMLModelResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newDeleteMLModelResponse Source #

Create a value of DeleteMLModelResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:DeleteMLModel', deleteMLModelResponse_mLModelId - A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelID in the request.

$sel:httpStatus:DeleteMLModelResponse', deleteMLModelResponse_httpStatus - The response's http status code.

UpdateMLModel

data UpdateMLModel Source #

See: newUpdateMLModel smart constructor.

Instances

Instances details
Eq UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Read UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Show UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Generic UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type Rep UpdateMLModel :: Type -> Type #

NFData UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Methods

rnf :: UpdateMLModel -> () #

Hashable UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToJSON UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

AWSRequest UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type AWSResponse UpdateMLModel #

ToHeaders UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToPath UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToQuery UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModel = D1 ('MetaData "UpdateMLModel" "Amazonka.MachineLearning.UpdateMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateMLModel'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "scoreThreshold") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))
type AWSResponse UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

newUpdateMLModel Source #

Create a value of UpdateMLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelName:UpdateMLModel', updateMLModel_mLModelName - A user-supplied name or description of the MLModel.

$sel:scoreThreshold:UpdateMLModel', updateMLModel_scoreThreshold - The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction.

Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.

$sel:mLModelId:UpdateMLModel', updateMLModel_mLModelId - The ID assigned to the MLModel during creation.

data UpdateMLModelResponse Source #

Represents the output of an UpdateMLModel operation.

You can see the updated content by using the GetMLModel operation.

See: newUpdateMLModelResponse smart constructor.

Instances

Instances details
Eq UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Read UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Show UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Generic UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type Rep UpdateMLModelResponse :: Type -> Type #

NFData UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Methods

rnf :: UpdateMLModelResponse -> () #

type Rep UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModelResponse = D1 ('MetaData "UpdateMLModelResponse" "Amazonka.MachineLearning.UpdateMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateMLModelResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newUpdateMLModelResponse Source #

Create a value of UpdateMLModelResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:UpdateMLModel', updateMLModelResponse_mLModelId - The ID assigned to the MLModel during creation. This value should be identical to the value of the MLModelID in the request.

$sel:httpStatus:UpdateMLModelResponse', updateMLModelResponse_httpStatus - The response's http status code.

GetBatchPrediction

data GetBatchPrediction Source #

See: newGetBatchPrediction smart constructor.

Instances

Instances details
Eq GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Read GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Show GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Generic GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Associated Types

type Rep GetBatchPrediction :: Type -> Type #

NFData GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Methods

rnf :: GetBatchPrediction -> () #

Hashable GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

ToJSON GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

AWSRequest GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Associated Types

type AWSResponse GetBatchPrediction #

ToHeaders GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

ToPath GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

ToQuery GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

type Rep GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

type Rep GetBatchPrediction = D1 ('MetaData "GetBatchPrediction" "Amazonka.MachineLearning.GetBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetBatchPrediction'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse GetBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

newGetBatchPrediction Source #

Create a value of GetBatchPrediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:GetBatchPrediction', getBatchPrediction_batchPredictionId - An ID assigned to the BatchPrediction at creation.

data GetBatchPredictionResponse Source #

Represents the output of a GetBatchPrediction operation and describes a BatchPrediction.

See: newGetBatchPredictionResponse smart constructor.

Instances

Instances details
Eq GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Read GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Show GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Generic GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

Associated Types

type Rep GetBatchPredictionResponse :: Type -> Type #

NFData GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

type Rep GetBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetBatchPrediction

type Rep GetBatchPredictionResponse = D1 ('MetaData "GetBatchPredictionResponse" "Amazonka.MachineLearning.GetBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetBatchPredictionResponse'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)))) :*: ((S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "batchPredictionDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "totalRecordCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))))) :*: (((S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "invalidRecordCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "logUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "outputUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))))))

newGetBatchPredictionResponse Source #

Create a value of GetBatchPredictionResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:GetBatchPredictionResponse', getBatchPredictionResponse_status - The status of the BatchPrediction, which can be one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate batch predictions.
  • INPROGRESS - The batch predictions are in progress.
  • FAILED - The request to perform a batch prediction did not run to completion. It is not usable.
  • COMPLETED - The batch prediction process completed successfully.
  • DELETED - The BatchPrediction is marked as deleted. It is not usable.

$sel:lastUpdatedAt:GetBatchPredictionResponse', getBatchPredictionResponse_lastUpdatedAt - The time of the most recent edit to BatchPrediction. The time is expressed in epoch time.

$sel:createdAt:GetBatchPredictionResponse', getBatchPredictionResponse_createdAt - The time when the BatchPrediction was created. The time is expressed in epoch time.

$sel:computeTime:GetBatchPredictionResponse', getBatchPredictionResponse_computeTime - The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the BatchPrediction, normalized and scaled on computation resources. ComputeTime is only available if the BatchPrediction is in the COMPLETED state.

$sel:inputDataLocationS3:GetBatchPredictionResponse', getBatchPredictionResponse_inputDataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:mLModelId:GetBatchPredictionResponse', getBatchPredictionResponse_mLModelId - The ID of the MLModel that generated predictions for the BatchPrediction request.

$sel:batchPredictionDataSourceId:GetBatchPredictionResponse', getBatchPredictionResponse_batchPredictionDataSourceId - The ID of the DataSource that was used to create the BatchPrediction.

$sel:totalRecordCount:GetBatchPredictionResponse', getBatchPredictionResponse_totalRecordCount - The number of total records that Amazon Machine Learning saw while processing the BatchPrediction.

$sel:startedAt:GetBatchPredictionResponse', getBatchPredictionResponse_startedAt - The epoch time when Amazon Machine Learning marked the BatchPrediction as INPROGRESS. StartedAt isn't available if the BatchPrediction is in the PENDING state.

$sel:batchPredictionId:GetBatchPrediction', getBatchPredictionResponse_batchPredictionId - An ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID in the request.

$sel:finishedAt:GetBatchPredictionResponse', getBatchPredictionResponse_finishedAt - The epoch time when Amazon Machine Learning marked the BatchPrediction as COMPLETED or FAILED. FinishedAt is only available when the BatchPrediction is in the COMPLETED or FAILED state.

$sel:invalidRecordCount:GetBatchPredictionResponse', getBatchPredictionResponse_invalidRecordCount - The number of invalid records that Amazon Machine Learning saw while processing the BatchPrediction.

$sel:createdByIamUser:GetBatchPredictionResponse', getBatchPredictionResponse_createdByIamUser - The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:GetBatchPredictionResponse', getBatchPredictionResponse_name - A user-supplied name or description of the BatchPrediction.

$sel:logUri:GetBatchPredictionResponse', getBatchPredictionResponse_logUri - A link to the file that contains logs of the CreateBatchPrediction operation.

$sel:message:GetBatchPredictionResponse', getBatchPredictionResponse_message - A description of the most recent details about processing the batch prediction request.

$sel:outputUri:GetBatchPredictionResponse', getBatchPredictionResponse_outputUri - The location of an Amazon S3 bucket or directory to receive the operation results.

$sel:httpStatus:GetBatchPredictionResponse', getBatchPredictionResponse_httpStatus - The response's http status code.

DescribeBatchPredictions (Paginated)

data DescribeBatchPredictions Source #

See: newDescribeBatchPredictions smart constructor.

Instances

Instances details
Eq DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Read DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Show DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Generic DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Associated Types

type Rep DescribeBatchPredictions :: Type -> Type #

NFData DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Hashable DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

ToJSON DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

AWSPager DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

AWSRequest DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

ToHeaders DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

ToPath DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

ToQuery DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

type Rep DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

type Rep DescribeBatchPredictions = D1 ('MetaData "DescribeBatchPredictions" "Amazonka.MachineLearning.DescribeBatchPredictions" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeBatchPredictions'" 'PrefixI 'True) (((S1 ('MetaSel ('Just "eq") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "ge") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "prefix") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "gt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "ne") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))) :*: ((S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "sortOrder") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe SortOrder)) :*: S1 ('MetaSel ('Just "limit") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Natural)))) :*: (S1 ('MetaSel ('Just "lt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "filterVariable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe BatchPredictionFilterVariable)) :*: S1 ('MetaSel ('Just "le") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))))
type AWSResponse DescribeBatchPredictions Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

newDescribeBatchPredictions :: DescribeBatchPredictions Source #

Create a value of DescribeBatchPredictions with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:eq:DescribeBatchPredictions', describeBatchPredictions_eq - The equal to operator. The BatchPrediction results will have FilterVariable values that exactly match the value specified with EQ.

$sel:ge:DescribeBatchPredictions', describeBatchPredictions_ge - The greater than or equal to operator. The BatchPrediction results will have FilterVariable values that are greater than or equal to the value specified with GE.

$sel:prefix:DescribeBatchPredictions', describeBatchPredictions_prefix - A string that is found at the beginning of a variable, such as Name or Id.

For example, a Batch Prediction operation could have the Name 2014-09-09-HolidayGiftMailer. To search for this BatchPrediction, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

$sel:gt:DescribeBatchPredictions', describeBatchPredictions_gt - The greater than operator. The BatchPrediction results will have FilterVariable values that are greater than the value specified with GT.

$sel:ne:DescribeBatchPredictions', describeBatchPredictions_ne - The not equal to operator. The BatchPrediction results will have FilterVariable values not equal to the value specified with NE.

$sel:nextToken:DescribeBatchPredictions', describeBatchPredictions_nextToken - An ID of the page in the paginated results.

$sel:sortOrder:DescribeBatchPredictions', describeBatchPredictions_sortOrder - A two-value parameter that determines the sequence of the resulting list of MLModels.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

$sel:limit:DescribeBatchPredictions', describeBatchPredictions_limit - The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

$sel:lt:DescribeBatchPredictions', describeBatchPredictions_lt - The less than operator. The BatchPrediction results will have FilterVariable values that are less than the value specified with LT.

$sel:filterVariable:DescribeBatchPredictions', describeBatchPredictions_filterVariable - Use one of the following variables to filter a list of BatchPrediction:

  • CreatedAt - Sets the search criteria to the BatchPrediction creation date.
  • Status - Sets the search criteria to the BatchPrediction status.
  • Name - Sets the search criteria to the contents of the BatchPrediction ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked the BatchPrediction creation.
  • MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
  • DataSourceId - Sets the search criteria to the DataSource used in the BatchPrediction.
  • DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.

$sel:le:DescribeBatchPredictions', describeBatchPredictions_le - The less than or equal to operator. The BatchPrediction results will have FilterVariable values that are less than or equal to the value specified with LE.

data DescribeBatchPredictionsResponse Source #

Represents the output of a DescribeBatchPredictions operation. The content is essentially a list of BatchPredictions.

See: newDescribeBatchPredictionsResponse smart constructor.

Instances

Instances details
Eq DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Read DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Show DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Generic DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

Associated Types

type Rep DescribeBatchPredictionsResponse :: Type -> Type #

NFData DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

type Rep DescribeBatchPredictionsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeBatchPredictions

type Rep DescribeBatchPredictionsResponse = D1 ('MetaData "DescribeBatchPredictionsResponse" "Amazonka.MachineLearning.DescribeBatchPredictions" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeBatchPredictionsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "results") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [BatchPrediction])) :*: (S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeBatchPredictionsResponse Source #

Create a value of DescribeBatchPredictionsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:results:DescribeBatchPredictionsResponse', describeBatchPredictionsResponse_results - A list of BatchPrediction objects that meet the search criteria.

$sel:nextToken:DescribeBatchPredictions', describeBatchPredictionsResponse_nextToken - The ID of the next page in the paginated results that indicates at least one more page follows.

$sel:httpStatus:DescribeBatchPredictionsResponse', describeBatchPredictionsResponse_httpStatus - The response's http status code.

CreateDataSourceFromRDS

data CreateDataSourceFromRDS Source #

See: newCreateDataSourceFromRDS smart constructor.

Instances

Instances details
Eq CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Read CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Show CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Generic CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Associated Types

type Rep CreateDataSourceFromRDS :: Type -> Type #

NFData CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Methods

rnf :: CreateDataSourceFromRDS -> () #

Hashable CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

ToJSON CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

AWSRequest CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

ToHeaders CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

ToPath CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

ToQuery CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

type Rep CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

type Rep CreateDataSourceFromRDS = D1 ('MetaData "CreateDataSourceFromRDS" "Amazonka.MachineLearning.CreateDataSourceFromRDS" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromRDS'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "dataSourceName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "computeStatistics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool))) :*: (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: (S1 ('MetaSel ('Just "rDSData") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 RDSDataSpec) :*: S1 ('MetaSel ('Just "roleARN") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))
type AWSResponse CreateDataSourceFromRDS Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

newCreateDataSourceFromRDS Source #

Create a value of CreateDataSourceFromRDS with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceName:CreateDataSourceFromRDS', createDataSourceFromRDS_dataSourceName - A user-supplied name or description of the DataSource.

$sel:computeStatistics:CreateDataSourceFromRDS', createDataSourceFromRDS_computeStatistics - The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the @DataSource needs to be used for MLModel@ training.

$sel:dataSourceId:CreateDataSourceFromRDS', createDataSourceFromRDS_dataSourceId - A user-supplied ID that uniquely identifies the DataSource. Typically, an Amazon Resource Number (ARN) becomes the ID for a DataSource.

$sel:rDSData:CreateDataSourceFromRDS', createDataSourceFromRDS_rDSData - The data specification of an Amazon RDS DataSource:

  • DatabaseInformation -

    • DatabaseName - The name of the Amazon RDS database.
    • InstanceIdentifier - A unique identifier for the Amazon RDS database instance.
  • DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database.
  • ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see Role templates for data pipelines.
  • ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.
  • SecurityInfo - The security information to use to access an RDS DB instance. You need to set up appropriate ingress rules for the security entity IDs provided to allow access to the Amazon RDS instance. Specify a [SubnetId, SecurityGroupIds] pair for a VPC-based RDS DB instance.
  • SelectSqlQuery - A query that is used to retrieve the observation data for the Datasource.
  • S3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.
  • DataSchemaUri - The Amazon S3 location of the DataSchema.
  • DataSchema - A JSON string representing the schema. This is not required if DataSchemaUri is specified.
  • DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the Datasource.

    Sample - "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"

$sel:roleARN:CreateDataSourceFromRDS', createDataSourceFromRDS_roleARN - The role that Amazon ML assumes on behalf of the user to create and activate a data pipeline in the user's account and copy data using the SelectSqlQuery query from Amazon RDS to Amazon S3.

data CreateDataSourceFromRDSResponse Source #

Represents the output of a CreateDataSourceFromRDS operation, and is an acknowledgement that Amazon ML received the request.

The CreateDataSourceFromRDS> operation is asynchronous. You can poll for updates by using the GetBatchPrediction operation and checking the Status parameter. You can inspect the Message when Status shows up as FAILED. You can also check the progress of the copy operation by going to the DataPipeline console and looking up the pipeline using the pipelineId from the describe call.

See: newCreateDataSourceFromRDSResponse smart constructor.

Instances

Instances details
Eq CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Read CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Show CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Generic CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

Associated Types

type Rep CreateDataSourceFromRDSResponse :: Type -> Type #

NFData CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

type Rep CreateDataSourceFromRDSResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateDataSourceFromRDS

type Rep CreateDataSourceFromRDSResponse = D1 ('MetaData "CreateDataSourceFromRDSResponse" "Amazonka.MachineLearning.CreateDataSourceFromRDS" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateDataSourceFromRDSResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateDataSourceFromRDSResponse Source #

Create a value of CreateDataSourceFromRDSResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSourceId:CreateDataSourceFromRDS', createDataSourceFromRDSResponse_dataSourceId - A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the DataSourceID in the request.

$sel:httpStatus:CreateDataSourceFromRDSResponse', createDataSourceFromRDSResponse_httpStatus - The response's http status code.

CreateEvaluation

data CreateEvaluation Source #

See: newCreateEvaluation smart constructor.

Instances

Instances details
Eq CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Read CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Show CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Generic CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Associated Types

type Rep CreateEvaluation :: Type -> Type #

NFData CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Methods

rnf :: CreateEvaluation -> () #

Hashable CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

ToJSON CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

AWSRequest CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Associated Types

type AWSResponse CreateEvaluation #

ToHeaders CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

ToPath CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

ToQuery CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

type Rep CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

type Rep CreateEvaluation = D1 ('MetaData "CreateEvaluation" "Amazonka.MachineLearning.CreateEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateEvaluation'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "evaluationName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "evaluationDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))
type AWSResponse CreateEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

newCreateEvaluation Source #

Create a value of CreateEvaluation with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationName:CreateEvaluation', createEvaluation_evaluationName - A user-supplied name or description of the Evaluation.

$sel:evaluationId:CreateEvaluation', createEvaluation_evaluationId - A user-supplied ID that uniquely identifies the Evaluation.

$sel:mLModelId:CreateEvaluation', createEvaluation_mLModelId - The ID of the MLModel to evaluate.

The schema used in creating the MLModel must match the schema of the DataSource used in the Evaluation.

$sel:evaluationDataSourceId:CreateEvaluation', createEvaluation_evaluationDataSourceId - The ID of the DataSource for the evaluation. The schema of the DataSource must match the schema used to create the MLModel.

data CreateEvaluationResponse Source #

Represents the output of a CreateEvaluation operation, and is an acknowledgement that Amazon ML received the request.

CreateEvaluation operation is asynchronous. You can poll for status updates by using the GetEvcaluation operation and checking the Status parameter.

See: newCreateEvaluationResponse smart constructor.

Instances

Instances details
Eq CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Read CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Show CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Generic CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

Associated Types

type Rep CreateEvaluationResponse :: Type -> Type #

NFData CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

type Rep CreateEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateEvaluation

type Rep CreateEvaluationResponse = D1 ('MetaData "CreateEvaluationResponse" "Amazonka.MachineLearning.CreateEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateEvaluationResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateEvaluationResponse Source #

Create a value of CreateEvaluationResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:CreateEvaluation', createEvaluationResponse_evaluationId - The user-supplied ID that uniquely identifies the Evaluation. This value should be identical to the value of the EvaluationId in the request.

$sel:httpStatus:CreateEvaluationResponse', createEvaluationResponse_httpStatus - The response's http status code.

Predict

data Predict Source #

See: newPredict smart constructor.

Constructors

Predict' Text (HashMap Text Text) Text 

Instances

Instances details
Eq Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

(==) :: Predict -> Predict -> Bool #

(/=) :: Predict -> Predict -> Bool #

Read Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Show Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Generic Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Associated Types

type Rep Predict :: Type -> Type #

Methods

from :: Predict -> Rep Predict x #

to :: Rep Predict x -> Predict #

NFData Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

rnf :: Predict -> () #

Hashable Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

hashWithSalt :: Int -> Predict -> Int #

hash :: Predict -> Int #

ToJSON Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

AWSRequest Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Associated Types

type AWSResponse Predict #

ToHeaders Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

toHeaders :: Predict -> [Header] #

ToPath Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

toPath :: Predict -> ByteString #

ToQuery Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

type Rep Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

type Rep Predict = D1 ('MetaData "Predict" "Amazonka.MachineLearning.Predict" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "Predict'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: (S1 ('MetaSel ('Just "record") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (HashMap Text Text)) :*: S1 ('MetaSel ('Just "predictEndpoint") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))
type AWSResponse Predict Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

newPredict Source #

Create a value of Predict with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:Predict', predict_mLModelId - A unique identifier of the MLModel.

$sel:record:Predict', predict_record - Undocumented member.

$sel:predictEndpoint:Predict', predict_predictEndpoint - Undocumented member.

data PredictResponse Source #

See: newPredictResponse smart constructor.

Instances

Instances details
Eq PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Read PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Show PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Generic PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Associated Types

type Rep PredictResponse :: Type -> Type #

NFData PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

Methods

rnf :: PredictResponse -> () #

type Rep PredictResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.Predict

type Rep PredictResponse = D1 ('MetaData "PredictResponse" "Amazonka.MachineLearning.Predict" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "PredictResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "prediction") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Prediction)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newPredictResponse Source #

Create a value of PredictResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:prediction:PredictResponse', predictResponse_prediction - Undocumented member.

$sel:httpStatus:PredictResponse', predictResponse_httpStatus - The response's http status code.

DeleteRealtimeEndpoint

data DeleteRealtimeEndpoint Source #

See: newDeleteRealtimeEndpoint smart constructor.

Instances

Instances details
Eq DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Read DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Show DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Generic DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Associated Types

type Rep DeleteRealtimeEndpoint :: Type -> Type #

NFData DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Methods

rnf :: DeleteRealtimeEndpoint -> () #

Hashable DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

ToJSON DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

AWSRequest DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Associated Types

type AWSResponse DeleteRealtimeEndpoint #

ToHeaders DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

ToPath DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

ToQuery DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

type Rep DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

type Rep DeleteRealtimeEndpoint = D1 ('MetaData "DeleteRealtimeEndpoint" "Amazonka.MachineLearning.DeleteRealtimeEndpoint" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteRealtimeEndpoint'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DeleteRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

newDeleteRealtimeEndpoint Source #

Create a value of DeleteRealtimeEndpoint with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:DeleteRealtimeEndpoint', deleteRealtimeEndpoint_mLModelId - The ID assigned to the MLModel during creation.

data DeleteRealtimeEndpointResponse Source #

Represents the output of an DeleteRealtimeEndpoint operation.

The result contains the MLModelId and the endpoint information for the MLModel.

See: newDeleteRealtimeEndpointResponse smart constructor.

Instances

Instances details
Eq DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Read DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Show DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Generic DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

Associated Types

type Rep DeleteRealtimeEndpointResponse :: Type -> Type #

NFData DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

type Rep DeleteRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DeleteRealtimeEndpoint

type Rep DeleteRealtimeEndpointResponse = D1 ('MetaData "DeleteRealtimeEndpointResponse" "Amazonka.MachineLearning.DeleteRealtimeEndpoint" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DeleteRealtimeEndpointResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "realtimeEndpointInfo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RealtimeEndpointInfo)) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDeleteRealtimeEndpointResponse Source #

Create a value of DeleteRealtimeEndpointResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:realtimeEndpointInfo:DeleteRealtimeEndpointResponse', deleteRealtimeEndpointResponse_realtimeEndpointInfo - The endpoint information of the MLModel

$sel:mLModelId:DeleteRealtimeEndpoint', deleteRealtimeEndpointResponse_mLModelId - A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.

$sel:httpStatus:DeleteRealtimeEndpointResponse', deleteRealtimeEndpointResponse_httpStatus - The response's http status code.

CreateBatchPrediction

data CreateBatchPrediction Source #

See: newCreateBatchPrediction smart constructor.

Instances

Instances details
Eq CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Read CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Show CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Generic CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Associated Types

type Rep CreateBatchPrediction :: Type -> Type #

NFData CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Methods

rnf :: CreateBatchPrediction -> () #

Hashable CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

ToJSON CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

AWSRequest CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Associated Types

type AWSResponse CreateBatchPrediction #

ToHeaders CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

ToPath CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

ToQuery CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

type Rep CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

type Rep CreateBatchPrediction = D1 ('MetaData "CreateBatchPrediction" "Amazonka.MachineLearning.CreateBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateBatchPrediction'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "batchPredictionName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: (S1 ('MetaSel ('Just "batchPredictionDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "outputUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))
type AWSResponse CreateBatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

newCreateBatchPrediction Source #

Create a value of CreateBatchPrediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionName:CreateBatchPrediction', createBatchPrediction_batchPredictionName - A user-supplied name or description of the BatchPrediction. BatchPredictionName can only use the UTF-8 character set.

$sel:batchPredictionId:CreateBatchPrediction', createBatchPrediction_batchPredictionId - A user-supplied ID that uniquely identifies the BatchPrediction.

$sel:mLModelId:CreateBatchPrediction', createBatchPrediction_mLModelId - The ID of the MLModel that will generate predictions for the group of observations.

$sel:batchPredictionDataSourceId:CreateBatchPrediction', createBatchPrediction_batchPredictionDataSourceId - The ID of the DataSource that points to the group of observations to predict.

$sel:outputUri:CreateBatchPrediction', createBatchPrediction_outputUri - The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.

Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the Amazon Machine Learning Developer Guide.

data CreateBatchPredictionResponse Source #

Represents the output of a CreateBatchPrediction operation, and is an acknowledgement that Amazon ML received the request.

The CreateBatchPrediction operation is asynchronous. You can poll for status updates by using the >GetBatchPrediction operation and checking the Status parameter of the result.

See: newCreateBatchPredictionResponse smart constructor.

Instances

Instances details
Eq CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Read CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Show CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Generic CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

Associated Types

type Rep CreateBatchPredictionResponse :: Type -> Type #

NFData CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

type Rep CreateBatchPredictionResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateBatchPrediction

type Rep CreateBatchPredictionResponse = D1 ('MetaData "CreateBatchPredictionResponse" "Amazonka.MachineLearning.CreateBatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateBatchPredictionResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newCreateBatchPredictionResponse Source #

Create a value of CreateBatchPredictionResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:batchPredictionId:CreateBatchPrediction', createBatchPredictionResponse_batchPredictionId - A user-supplied ID that uniquely identifies the BatchPrediction. This value is identical to the value of the BatchPredictionId in the request.

$sel:httpStatus:CreateBatchPredictionResponse', createBatchPredictionResponse_httpStatus - The response's http status code.

GetEvaluation

data GetEvaluation Source #

See: newGetEvaluation smart constructor.

Constructors

GetEvaluation' Text 

Instances

Instances details
Eq GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Read GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Show GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Generic GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Associated Types

type Rep GetEvaluation :: Type -> Type #

NFData GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Methods

rnf :: GetEvaluation -> () #

Hashable GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

ToJSON GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

AWSRequest GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Associated Types

type AWSResponse GetEvaluation #

ToHeaders GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

ToPath GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

ToQuery GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

type Rep GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

type Rep GetEvaluation = D1 ('MetaData "GetEvaluation" "Amazonka.MachineLearning.GetEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetEvaluation'" 'PrefixI 'True) (S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse GetEvaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

newGetEvaluation Source #

Create a value of GetEvaluation with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:evaluationId:GetEvaluation', getEvaluation_evaluationId - The ID of the Evaluation to retrieve. The evaluation of each MLModel is recorded and cataloged. The ID provides the means to access the information.

data GetEvaluationResponse Source #

Represents the output of a GetEvaluation operation and describes an Evaluation.

See: newGetEvaluationResponse smart constructor.

Instances

Instances details
Eq GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Read GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Show GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Generic GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Associated Types

type Rep GetEvaluationResponse :: Type -> Type #

NFData GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

Methods

rnf :: GetEvaluationResponse -> () #

type Rep GetEvaluationResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.GetEvaluation

type Rep GetEvaluationResponse = D1 ('MetaData "GetEvaluationResponse" "Amazonka.MachineLearning.GetEvaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "GetEvaluationResponse'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "performanceMetrics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe PerformanceMetrics))) :*: (S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))) :*: ((S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))) :*: (((S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "logUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "evaluationDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))))

newGetEvaluationResponse Source #

Create a value of GetEvaluationResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:GetEvaluationResponse', getEvaluationResponse_status - The status of the evaluation. This element can have one of the following values:

  • PENDING - Amazon Machine Language (Amazon ML) submitted a request to evaluate an MLModel.
  • INPROGRESS - The evaluation is underway.
  • FAILED - The request to evaluate an MLModel did not run to completion. It is not usable.
  • COMPLETED - The evaluation process completed successfully.
  • DELETED - The Evaluation is marked as deleted. It is not usable.

$sel:performanceMetrics:GetEvaluationResponse', getEvaluationResponse_performanceMetrics - Measurements of how well the MLModel performed using observations referenced by the DataSource. One of the following metric is returned based on the type of the MLModel:

  • BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.
  • RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
  • MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to measure performance.

For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.

$sel:lastUpdatedAt:GetEvaluationResponse', getEvaluationResponse_lastUpdatedAt - The time of the most recent edit to the Evaluation. The time is expressed in epoch time.

$sel:createdAt:GetEvaluationResponse', getEvaluationResponse_createdAt - The time that the Evaluation was created. The time is expressed in epoch time.

$sel:computeTime:GetEvaluationResponse', getEvaluationResponse_computeTime - The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the Evaluation, normalized and scaled on computation resources. ComputeTime is only available if the Evaluation is in the COMPLETED state.

$sel:inputDataLocationS3:GetEvaluationResponse', getEvaluationResponse_inputDataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:mLModelId:GetEvaluationResponse', getEvaluationResponse_mLModelId - The ID of the MLModel that was the focus of the evaluation.

$sel:startedAt:GetEvaluationResponse', getEvaluationResponse_startedAt - The epoch time when Amazon Machine Learning marked the Evaluation as INPROGRESS. StartedAt isn't available if the Evaluation is in the PENDING state.

$sel:finishedAt:GetEvaluationResponse', getEvaluationResponse_finishedAt - The epoch time when Amazon Machine Learning marked the Evaluation as COMPLETED or FAILED. FinishedAt is only available when the Evaluation is in the COMPLETED or FAILED state.

$sel:createdByIamUser:GetEvaluationResponse', getEvaluationResponse_createdByIamUser - The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:GetEvaluationResponse', getEvaluationResponse_name - A user-supplied name or description of the Evaluation.

$sel:logUri:GetEvaluationResponse', getEvaluationResponse_logUri - A link to the file that contains logs of the CreateEvaluation operation.

$sel:evaluationId:GetEvaluation', getEvaluationResponse_evaluationId - The evaluation ID which is same as the EvaluationId in the request.

$sel:message:GetEvaluationResponse', getEvaluationResponse_message - A description of the most recent details about evaluating the MLModel.

$sel:evaluationDataSourceId:GetEvaluationResponse', getEvaluationResponse_evaluationDataSourceId - The DataSource used for this evaluation.

$sel:httpStatus:GetEvaluationResponse', getEvaluationResponse_httpStatus - The response's http status code.

DescribeEvaluations (Paginated)

data DescribeEvaluations Source #

See: newDescribeEvaluations smart constructor.

Instances

Instances details
Eq DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Read DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Show DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Generic DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Associated Types

type Rep DescribeEvaluations :: Type -> Type #

NFData DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Methods

rnf :: DescribeEvaluations -> () #

Hashable DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

ToJSON DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

AWSPager DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

AWSRequest DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Associated Types

type AWSResponse DescribeEvaluations #

ToHeaders DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

ToPath DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

ToQuery DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

type Rep DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

type AWSResponse DescribeEvaluations Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

newDescribeEvaluations :: DescribeEvaluations Source #

Create a value of DescribeEvaluations with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:eq:DescribeEvaluations', describeEvaluations_eq - The equal to operator. The Evaluation results will have FilterVariable values that exactly match the value specified with EQ.

$sel:ge:DescribeEvaluations', describeEvaluations_ge - The greater than or equal to operator. The Evaluation results will have FilterVariable values that are greater than or equal to the value specified with GE.

$sel:prefix:DescribeEvaluations', describeEvaluations_prefix - A string that is found at the beginning of a variable, such as Name or Id.

For example, an Evaluation could have the Name 2014-09-09-HolidayGiftMailer. To search for this Evaluation, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

$sel:gt:DescribeEvaluations', describeEvaluations_gt - The greater than operator. The Evaluation results will have FilterVariable values that are greater than the value specified with GT.

$sel:ne:DescribeEvaluations', describeEvaluations_ne - The not equal to operator. The Evaluation results will have FilterVariable values not equal to the value specified with NE.

$sel:nextToken:DescribeEvaluations', describeEvaluations_nextToken - The ID of the page in the paginated results.

$sel:sortOrder:DescribeEvaluations', describeEvaluations_sortOrder - A two-value parameter that determines the sequence of the resulting list of Evaluation.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

$sel:limit:DescribeEvaluations', describeEvaluations_limit - The maximum number of Evaluation to include in the result.

$sel:lt:DescribeEvaluations', describeEvaluations_lt - The less than operator. The Evaluation results will have FilterVariable values that are less than the value specified with LT.

$sel:filterVariable:DescribeEvaluations', describeEvaluations_filterVariable - Use one of the following variable to filter a list of Evaluation objects:

  • CreatedAt - Sets the search criteria to the Evaluation creation date.
  • Status - Sets the search criteria to the Evaluation status.
  • Name - Sets the search criteria to the contents of Evaluation ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked an Evaluation.
  • MLModelId - Sets the search criteria to the MLModel that was evaluated.
  • DataSourceId - Sets the search criteria to the DataSource used in Evaluation.
  • DataUri - Sets the search criteria to the data file(s) used in Evaluation. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.

$sel:le:DescribeEvaluations', describeEvaluations_le - The less than or equal to operator. The Evaluation results will have FilterVariable values that are less than or equal to the value specified with LE.

data DescribeEvaluationsResponse Source #

Represents the query results from a DescribeEvaluations operation. The content is essentially a list of Evaluation.

See: newDescribeEvaluationsResponse smart constructor.

Instances

Instances details
Eq DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Read DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Show DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Generic DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

Associated Types

type Rep DescribeEvaluationsResponse :: Type -> Type #

NFData DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

type Rep DescribeEvaluationsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeEvaluations

type Rep DescribeEvaluationsResponse = D1 ('MetaData "DescribeEvaluationsResponse" "Amazonka.MachineLearning.DescribeEvaluations" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeEvaluationsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "results") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Evaluation])) :*: (S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeEvaluationsResponse Source #

Create a value of DescribeEvaluationsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:results:DescribeEvaluationsResponse', describeEvaluationsResponse_results - A list of Evaluation that meet the search criteria.

$sel:nextToken:DescribeEvaluations', describeEvaluationsResponse_nextToken - The ID of the next page in the paginated results that indicates at least one more page follows.

$sel:httpStatus:DescribeEvaluationsResponse', describeEvaluationsResponse_httpStatus - The response's http status code.

CreateRealtimeEndpoint

data CreateRealtimeEndpoint Source #

See: newCreateRealtimeEndpoint smart constructor.

Instances

Instances details
Eq CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Read CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Show CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Generic CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Associated Types

type Rep CreateRealtimeEndpoint :: Type -> Type #

NFData CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Methods

rnf :: CreateRealtimeEndpoint -> () #

Hashable CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

ToJSON CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

AWSRequest CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Associated Types

type AWSResponse CreateRealtimeEndpoint #

ToHeaders CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

ToPath CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

ToQuery CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

type Rep CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

type Rep CreateRealtimeEndpoint = D1 ('MetaData "CreateRealtimeEndpoint" "Amazonka.MachineLearning.CreateRealtimeEndpoint" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateRealtimeEndpoint'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse CreateRealtimeEndpoint Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

newCreateRealtimeEndpoint Source #

Create a value of CreateRealtimeEndpoint with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:CreateRealtimeEndpoint', createRealtimeEndpoint_mLModelId - The ID assigned to the MLModel during creation.

data CreateRealtimeEndpointResponse Source #

Represents the output of an CreateRealtimeEndpoint operation.

The result contains the MLModelId and the endpoint information for the MLModel.

Note: The endpoint information includes the URI of the MLModel; that is, the location to send online prediction requests for the specified MLModel.

See: newCreateRealtimeEndpointResponse smart constructor.

Instances

Instances details
Eq CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Read CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Show CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Generic CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

Associated Types

type Rep CreateRealtimeEndpointResponse :: Type -> Type #

NFData CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

type Rep CreateRealtimeEndpointResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.CreateRealtimeEndpoint

type Rep CreateRealtimeEndpointResponse = D1 ('MetaData "CreateRealtimeEndpointResponse" "Amazonka.MachineLearning.CreateRealtimeEndpoint" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "CreateRealtimeEndpointResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "realtimeEndpointInfo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RealtimeEndpointInfo)) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newCreateRealtimeEndpointResponse Source #

Create a value of CreateRealtimeEndpointResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:realtimeEndpointInfo:CreateRealtimeEndpointResponse', createRealtimeEndpointResponse_realtimeEndpointInfo - The endpoint information of the MLModel

$sel:mLModelId:CreateRealtimeEndpoint', createRealtimeEndpointResponse_mLModelId - A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of the MLModelId in the request.

$sel:httpStatus:CreateRealtimeEndpointResponse', createRealtimeEndpointResponse_httpStatus - The response's http status code.

AddTags

data AddTags Source #

See: newAddTags smart constructor.

Instances

Instances details
Eq AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

(==) :: AddTags -> AddTags -> Bool #

(/=) :: AddTags -> AddTags -> Bool #

Read AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Show AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Generic AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Associated Types

type Rep AddTags :: Type -> Type #

Methods

from :: AddTags -> Rep AddTags x #

to :: Rep AddTags x -> AddTags #

NFData AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

rnf :: AddTags -> () #

Hashable AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

hashWithSalt :: Int -> AddTags -> Int #

hash :: AddTags -> Int #

ToJSON AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

AWSRequest AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Associated Types

type AWSResponse AddTags #

ToHeaders AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

toHeaders :: AddTags -> [Header] #

ToPath AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

toPath :: AddTags -> ByteString #

ToQuery AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

type Rep AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

type Rep AddTags = D1 ('MetaData "AddTags" "Amazonka.MachineLearning.AddTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "AddTags'" 'PrefixI 'True) (S1 ('MetaSel ('Just "tags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 [Tag]) :*: (S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 TaggableResourceType))))
type AWSResponse AddTags Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

newAddTags Source #

Create a value of AddTags with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:tags:AddTags', addTags_tags - The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.

$sel:resourceId:AddTags', addTags_resourceId - The ID of the ML object to tag. For example, exampleModelId.

$sel:resourceType:AddTags', addTags_resourceType - The type of the ML object to tag.

data AddTagsResponse Source #

Amazon ML returns the following elements.

See: newAddTagsResponse smart constructor.

Instances

Instances details
Eq AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Read AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Show AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Generic AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Associated Types

type Rep AddTagsResponse :: Type -> Type #

NFData AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

Methods

rnf :: AddTagsResponse -> () #

type Rep AddTagsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.AddTags

type Rep AddTagsResponse = D1 ('MetaData "AddTagsResponse" "Amazonka.MachineLearning.AddTags" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "AddTagsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "resourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "resourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe TaggableResourceType)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newAddTagsResponse Source #

Create a value of AddTagsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:resourceId:AddTags', addTagsResponse_resourceId - The ID of the ML object that was tagged.

$sel:resourceType:AddTags', addTagsResponse_resourceType - The type of the ML object that was tagged.

$sel:httpStatus:AddTagsResponse', addTagsResponse_httpStatus - The response's http status code.

DescribeMLModels (Paginated)

data DescribeMLModels Source #

See: newDescribeMLModels smart constructor.

Instances

Instances details
Eq DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Read DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Show DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Generic DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type Rep DescribeMLModels :: Type -> Type #

NFData DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Methods

rnf :: DescribeMLModels -> () #

Hashable DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToJSON DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

AWSPager DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

AWSRequest DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type AWSResponse DescribeMLModels #

ToHeaders DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToPath DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

ToQuery DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type AWSResponse DescribeMLModels Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

newDescribeMLModels :: DescribeMLModels Source #

Create a value of DescribeMLModels with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:eq:DescribeMLModels', describeMLModels_eq - The equal to operator. The MLModel results will have FilterVariable values that exactly match the value specified with EQ.

$sel:ge:DescribeMLModels', describeMLModels_ge - The greater than or equal to operator. The MLModel results will have FilterVariable values that are greater than or equal to the value specified with GE.

$sel:prefix:DescribeMLModels', describeMLModels_prefix - A string that is found at the beginning of a variable, such as Name or Id.

For example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer. To search for this MLModel, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

$sel:gt:DescribeMLModels', describeMLModels_gt - The greater than operator. The MLModel results will have FilterVariable values that are greater than the value specified with GT.

$sel:ne:DescribeMLModels', describeMLModels_ne - The not equal to operator. The MLModel results will have FilterVariable values not equal to the value specified with NE.

$sel:nextToken:DescribeMLModels', describeMLModels_nextToken - The ID of the page in the paginated results.

$sel:sortOrder:DescribeMLModels', describeMLModels_sortOrder - A two-value parameter that determines the sequence of the resulting list of MLModel.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

$sel:limit:DescribeMLModels', describeMLModels_limit - The number of pages of information to include in the result. The range of acceptable values is 1 through 100. The default value is 100.

$sel:lt:DescribeMLModels', describeMLModels_lt - The less than operator. The MLModel results will have FilterVariable values that are less than the value specified with LT.

$sel:filterVariable:DescribeMLModels', describeMLModels_filterVariable - Use one of the following variables to filter a list of MLModel:

  • CreatedAt - Sets the search criteria to MLModel creation date.
  • Status - Sets the search criteria to MLModel status.
  • Name - Sets the search criteria to the contents of MLModel ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked the MLModel creation.
  • TrainingDataSourceId - Sets the search criteria to the DataSource used to train one or more MLModel.
  • RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time endpoint status.
  • MLModelType - Sets the search criteria to MLModel type: binary, regression, or multi-class.
  • Algorithm - Sets the search criteria to the algorithm that the MLModel uses.
  • TrainingDataURI - Sets the search criteria to the data file(s) used in training a MLModel. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.

$sel:le:DescribeMLModels', describeMLModels_le - The less than or equal to operator. The MLModel results will have FilterVariable values that are less than or equal to the value specified with LE.

data DescribeMLModelsResponse Source #

Represents the output of a DescribeMLModels operation. The content is essentially a list of MLModel.

See: newDescribeMLModelsResponse smart constructor.

Instances

Instances details
Eq DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Read DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Show DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Generic DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

Associated Types

type Rep DescribeMLModelsResponse :: Type -> Type #

NFData DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModelsResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeMLModels

type Rep DescribeMLModelsResponse = D1 ('MetaData "DescribeMLModelsResponse" "Amazonka.MachineLearning.DescribeMLModels" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeMLModelsResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "results") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [MLModel])) :*: (S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeMLModelsResponse Source #

Create a value of DescribeMLModelsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:results:DescribeMLModelsResponse', describeMLModelsResponse_results - A list of MLModel that meet the search criteria.

$sel:nextToken:DescribeMLModels', describeMLModelsResponse_nextToken - The ID of the next page in the paginated results that indicates at least one more page follows.

$sel:httpStatus:DescribeMLModelsResponse', describeMLModelsResponse_httpStatus - The response's http status code.

DescribeDataSources (Paginated)

data DescribeDataSources Source #

See: newDescribeDataSources smart constructor.

Instances

Instances details
Eq DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Read DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Show DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Generic DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Associated Types

type Rep DescribeDataSources :: Type -> Type #

NFData DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Methods

rnf :: DescribeDataSources -> () #

Hashable DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

ToJSON DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

AWSPager DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

AWSRequest DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Associated Types

type AWSResponse DescribeDataSources #

ToHeaders DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

ToPath DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

ToQuery DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

type Rep DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

type AWSResponse DescribeDataSources Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

newDescribeDataSources :: DescribeDataSources Source #

Create a value of DescribeDataSources with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:eq:DescribeDataSources', describeDataSources_eq - The equal to operator. The DataSource results will have FilterVariable values that exactly match the value specified with EQ.

$sel:ge:DescribeDataSources', describeDataSources_ge - The greater than or equal to operator. The DataSource results will have FilterVariable values that are greater than or equal to the value specified with GE.

$sel:prefix:DescribeDataSources', describeDataSources_prefix - A string that is found at the beginning of a variable, such as Name or Id.

For example, a DataSource could have the Name 2014-09-09-HolidayGiftMailer. To search for this DataSource, select Name for the FilterVariable and any of the following strings for the Prefix:

  • 2014-09
  • 2014-09-09
  • 2014-09-09-Holiday

$sel:gt:DescribeDataSources', describeDataSources_gt - The greater than operator. The DataSource results will have FilterVariable values that are greater than the value specified with GT.

$sel:ne:DescribeDataSources', describeDataSources_ne - The not equal to operator. The DataSource results will have FilterVariable values not equal to the value specified with NE.

$sel:nextToken:DescribeDataSources', describeDataSources_nextToken - The ID of the page in the paginated results.

$sel:sortOrder:DescribeDataSources', describeDataSources_sortOrder - A two-value parameter that determines the sequence of the resulting list of DataSource.

  • asc - Arranges the list in ascending order (A-Z, 0-9).
  • dsc - Arranges the list in descending order (Z-A, 9-0).

Results are sorted by FilterVariable.

$sel:limit:DescribeDataSources', describeDataSources_limit - The maximum number of DataSource to include in the result.

$sel:lt:DescribeDataSources', describeDataSources_lt - The less than operator. The DataSource results will have FilterVariable values that are less than the value specified with LT.

$sel:filterVariable:DescribeDataSources', describeDataSources_filterVariable - Use one of the following variables to filter a list of DataSource:

  • CreatedAt - Sets the search criteria to DataSource creation dates.
  • Status - Sets the search criteria to DataSource statuses.
  • Name - Sets the search criteria to the contents of DataSource Name.
  • DataUri - Sets the search criteria to the URI of data files used to create the DataSource. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
  • IAMUser - Sets the search criteria to the user account that invoked the DataSource creation.

$sel:le:DescribeDataSources', describeDataSources_le - The less than or equal to operator. The DataSource results will have FilterVariable values that are less than or equal to the value specified with LE.

data DescribeDataSourcesResponse Source #

Represents the query results from a DescribeDataSources operation. The content is essentially a list of DataSource.

See: newDescribeDataSourcesResponse smart constructor.

Instances

Instances details
Eq DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Read DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Show DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Generic DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

Associated Types

type Rep DescribeDataSourcesResponse :: Type -> Type #

NFData DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

type Rep DescribeDataSourcesResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.DescribeDataSources

type Rep DescribeDataSourcesResponse = D1 ('MetaData "DescribeDataSourcesResponse" "Amazonka.MachineLearning.DescribeDataSources" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DescribeDataSourcesResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "results") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [DataSource])) :*: (S1 ('MetaSel ('Just "nextToken") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDescribeDataSourcesResponse Source #

Create a value of DescribeDataSourcesResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:results:DescribeDataSourcesResponse', describeDataSourcesResponse_results - A list of DataSource that meet the search criteria.

$sel:nextToken:DescribeDataSources', describeDataSourcesResponse_nextToken - An ID of the next page in the paginated results that indicates at least one more page follows.

$sel:httpStatus:DescribeDataSourcesResponse', describeDataSourcesResponse_httpStatus - The response's http status code.

Types

Algorithm

newtype Algorithm Source #

The function used to train an MLModel. Training choices supported by Amazon ML include the following:

  • SGD - Stochastic Gradient Descent.
  • RandomForest - Random forest of decision trees.

Constructors

Algorithm' 

Fields

Bundled Patterns

pattern Algorithm_Sgd :: Algorithm 

Instances

Instances details
Eq Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Ord Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Read Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Show Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Generic Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Associated Types

type Rep Algorithm :: Type -> Type #

NFData Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Methods

rnf :: Algorithm -> () #

Hashable Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToJSON Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToJSONKey Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

FromJSON Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

FromJSONKey Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToLog Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToHeader Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToQuery Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

FromXML Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToXML Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Methods

toXML :: Algorithm -> XML #

ToByteString Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Methods

toBS :: Algorithm -> ByteString #

FromText Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

ToText Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

Methods

toText :: Algorithm -> Text #

type Rep Algorithm Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Algorithm

type Rep Algorithm = D1 ('MetaData "Algorithm" "Amazonka.MachineLearning.Types.Algorithm" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "Algorithm'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromAlgorithm") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

BatchPredictionFilterVariable

newtype BatchPredictionFilterVariable Source #

A list of the variables to use in searching or filtering BatchPrediction.

  • CreatedAt - Sets the search criteria to BatchPrediction creation date.
  • Status - Sets the search criteria to BatchPrediction status.
  • Name - Sets the search criteria to the contents of BatchPrediction Name.
  • IAMUser - Sets the search criteria to the user account that invoked the BatchPrediction creation.
  • MLModelId - Sets the search criteria to the MLModel used in the BatchPrediction.
  • DataSourceId - Sets the search criteria to the DataSource used in the BatchPrediction.
  • DataURI - Sets the search criteria to the data file(s) used in the BatchPrediction. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.

Instances

Instances details
Eq BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Ord BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Read BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Show BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Generic BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Associated Types

type Rep BatchPredictionFilterVariable :: Type -> Type #

NFData BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

Hashable BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToJSON BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToJSONKey BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

FromJSON BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

FromJSONKey BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToLog BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToHeader BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToQuery BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

FromXML BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToXML BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToByteString BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

FromText BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

ToText BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

type Rep BatchPredictionFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPredictionFilterVariable

type Rep BatchPredictionFilterVariable = D1 ('MetaData "BatchPredictionFilterVariable" "Amazonka.MachineLearning.Types.BatchPredictionFilterVariable" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "BatchPredictionFilterVariable'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromBatchPredictionFilterVariable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

DataSourceFilterVariable

newtype DataSourceFilterVariable Source #

A list of the variables to use in searching or filtering DataSource.

  • CreatedAt - Sets the search criteria to DataSource creation date.
  • Status - Sets the search criteria to DataSource status.
  • Name - Sets the search criteria to the contents of DataSource Name.
  • DataUri - Sets the search criteria to the URI of data files used to create the DataSource. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.
  • IAMUser - Sets the search criteria to the user account that invoked the DataSource creation.

Note: The variable names should match the variable names in the DataSource.

Instances

Instances details
Eq DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Ord DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Read DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Show DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Generic DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Associated Types

type Rep DataSourceFilterVariable :: Type -> Type #

NFData DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

Hashable DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToJSON DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToJSONKey DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

FromJSON DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

FromJSONKey DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToLog DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToHeader DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToQuery DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

FromXML DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToXML DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToByteString DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

FromText DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

ToText DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

type Rep DataSourceFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSourceFilterVariable

type Rep DataSourceFilterVariable = D1 ('MetaData "DataSourceFilterVariable" "Amazonka.MachineLearning.Types.DataSourceFilterVariable" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "DataSourceFilterVariable'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromDataSourceFilterVariable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

DetailsAttributes

newtype DetailsAttributes Source #

Contains the key values of DetailsMap:

  • PredictiveModelType - Indicates the type of the MLModel.
  • Algorithm - Indicates the algorithm that was used for the MLModel.

Instances

Instances details
Eq DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Ord DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Read DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Show DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Generic DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Associated Types

type Rep DetailsAttributes :: Type -> Type #

NFData DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

Methods

rnf :: DetailsAttributes -> () #

Hashable DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToJSON DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToJSONKey DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

FromJSON DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

FromJSONKey DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToLog DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToHeader DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToQuery DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

FromXML DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToXML DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToByteString DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

FromText DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

ToText DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

type Rep DetailsAttributes Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DetailsAttributes

type Rep DetailsAttributes = D1 ('MetaData "DetailsAttributes" "Amazonka.MachineLearning.Types.DetailsAttributes" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "DetailsAttributes'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromDetailsAttributes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

EntityStatus

newtype EntityStatus Source #

Object status with the following possible values:

  • PENDING
  • INPROGRESS
  • FAILED
  • COMPLETED
  • DELETED

Constructors

EntityStatus' 

Instances

Instances details
Eq EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Ord EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Read EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Show EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Generic EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Associated Types

type Rep EntityStatus :: Type -> Type #

NFData EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Methods

rnf :: EntityStatus -> () #

Hashable EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToJSON EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToJSONKey EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

FromJSON EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

FromJSONKey EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToLog EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToHeader EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToQuery EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

FromXML EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToXML EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Methods

toXML :: EntityStatus -> XML #

ToByteString EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

FromText EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

ToText EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

Methods

toText :: EntityStatus -> Text #

type Rep EntityStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EntityStatus

type Rep EntityStatus = D1 ('MetaData "EntityStatus" "Amazonka.MachineLearning.Types.EntityStatus" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "EntityStatus'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromEntityStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

EvaluationFilterVariable

newtype EvaluationFilterVariable Source #

A list of the variables to use in searching or filtering Evaluation.

  • CreatedAt - Sets the search criteria to Evaluation creation date.
  • Status - Sets the search criteria to Evaluation status.
  • Name - Sets the search criteria to the contents of Evaluation ____ Name.
  • IAMUser - Sets the search criteria to the user account that invoked an evaluation.
  • MLModelId - Sets the search criteria to the Predictor that was evaluated.
  • DataSourceId - Sets the search criteria to the DataSource used in evaluation.
  • DataUri - Sets the search criteria to the data file(s) used in evaluation. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.

Instances

Instances details
Eq EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Ord EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Read EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Show EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Generic EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Associated Types

type Rep EvaluationFilterVariable :: Type -> Type #

NFData EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

Hashable EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToJSON EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToJSONKey EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

FromJSON EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

FromJSONKey EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToLog EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToHeader EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToQuery EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

FromXML EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToXML EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToByteString EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

FromText EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

ToText EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

type Rep EvaluationFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.EvaluationFilterVariable

type Rep EvaluationFilterVariable = D1 ('MetaData "EvaluationFilterVariable" "Amazonka.MachineLearning.Types.EvaluationFilterVariable" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "EvaluationFilterVariable'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromEvaluationFilterVariable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

MLModelFilterVariable

newtype MLModelFilterVariable Source #

Instances

Instances details
Eq MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Ord MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Read MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Show MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Generic MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Associated Types

type Rep MLModelFilterVariable :: Type -> Type #

NFData MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

Methods

rnf :: MLModelFilterVariable -> () #

Hashable MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToJSON MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToJSONKey MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

FromJSON MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

FromJSONKey MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToLog MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToHeader MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToQuery MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

FromXML MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToXML MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToByteString MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

FromText MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

ToText MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

type Rep MLModelFilterVariable Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelFilterVariable

type Rep MLModelFilterVariable = D1 ('MetaData "MLModelFilterVariable" "Amazonka.MachineLearning.Types.MLModelFilterVariable" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "MLModelFilterVariable'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromMLModelFilterVariable") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

MLModelType

newtype MLModelType Source #

Constructors

MLModelType' 

Instances

Instances details
Eq MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Ord MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Read MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Show MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Generic MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Associated Types

type Rep MLModelType :: Type -> Type #

NFData MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Methods

rnf :: MLModelType -> () #

Hashable MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToJSON MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToJSONKey MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

FromJSON MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

FromJSONKey MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToLog MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToHeader MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToQuery MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

FromXML MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToXML MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Methods

toXML :: MLModelType -> XML #

ToByteString MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

FromText MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

ToText MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

Methods

toText :: MLModelType -> Text #

type Rep MLModelType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModelType

type Rep MLModelType = D1 ('MetaData "MLModelType" "Amazonka.MachineLearning.Types.MLModelType" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "MLModelType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromMLModelType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

RealtimeEndpointStatus

newtype RealtimeEndpointStatus Source #

Instances

Instances details
Eq RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Ord RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Read RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Show RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Generic RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Associated Types

type Rep RealtimeEndpointStatus :: Type -> Type #

NFData RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

Methods

rnf :: RealtimeEndpointStatus -> () #

Hashable RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToJSON RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToJSONKey RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

FromJSON RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

FromJSONKey RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToLog RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToHeader RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToQuery RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

FromXML RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToXML RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToByteString RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

FromText RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

ToText RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

type Rep RealtimeEndpointStatus Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointStatus

type Rep RealtimeEndpointStatus = D1 ('MetaData "RealtimeEndpointStatus" "Amazonka.MachineLearning.Types.RealtimeEndpointStatus" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "RealtimeEndpointStatus'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromRealtimeEndpointStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

SortOrder

newtype SortOrder Source #

The sort order specified in a listing condition. Possible values include the following:

  • asc - Present the information in ascending order (from A-Z).
  • dsc - Present the information in descending order (from Z-A).

Constructors

SortOrder' 

Fields

Bundled Patterns

pattern SortOrder_Asc :: SortOrder 
pattern SortOrder_Dsc :: SortOrder 

Instances

Instances details
Eq SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Ord SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Read SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Show SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Generic SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Associated Types

type Rep SortOrder :: Type -> Type #

NFData SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Methods

rnf :: SortOrder -> () #

Hashable SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToJSON SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToJSONKey SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

FromJSON SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

FromJSONKey SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToLog SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToHeader SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToQuery SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

FromXML SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToXML SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Methods

toXML :: SortOrder -> XML #

ToByteString SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Methods

toBS :: SortOrder -> ByteString #

FromText SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

ToText SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

Methods

toText :: SortOrder -> Text #

type Rep SortOrder Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.SortOrder

type Rep SortOrder = D1 ('MetaData "SortOrder" "Amazonka.MachineLearning.Types.SortOrder" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "SortOrder'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromSortOrder") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

TaggableResourceType

newtype TaggableResourceType Source #

Instances

Instances details
Eq TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Ord TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Read TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Show TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Generic TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Associated Types

type Rep TaggableResourceType :: Type -> Type #

NFData TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

Methods

rnf :: TaggableResourceType -> () #

Hashable TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToJSON TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToJSONKey TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

FromJSON TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

FromJSONKey TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToLog TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToHeader TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToQuery TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

FromXML TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToXML TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToByteString TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

FromText TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

ToText TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

type Rep TaggableResourceType Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.TaggableResourceType

type Rep TaggableResourceType = D1 ('MetaData "TaggableResourceType" "Amazonka.MachineLearning.Types.TaggableResourceType" "libZSservicesZSamazonka-mlZSamazonka-ml" 'True) (C1 ('MetaCons "TaggableResourceType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromTaggableResourceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

BatchPrediction

data BatchPrediction Source #

Represents the output of a GetBatchPrediction operation.

The content consists of the detailed metadata, the status, and the data file information of a Batch Prediction.

See: newBatchPrediction smart constructor.

Instances

Instances details
Eq BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

Read BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

Show BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

Generic BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

Associated Types

type Rep BatchPrediction :: Type -> Type #

NFData BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

Methods

rnf :: BatchPrediction -> () #

Hashable BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

FromJSON BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

type Rep BatchPrediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.BatchPrediction

type Rep BatchPrediction = D1 ('MetaData "BatchPrediction" "Amazonka.MachineLearning.Types.BatchPrediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "BatchPrediction'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)))) :*: ((S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "batchPredictionDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "totalRecordCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))))) :*: (((S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "batchPredictionId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "invalidRecordCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)))) :*: ((S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "outputUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))))

newBatchPrediction :: BatchPrediction Source #

Create a value of BatchPrediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:BatchPrediction', batchPrediction_status - The status of the BatchPrediction. This element can have one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to generate predictions for a batch of observations.
  • INPROGRESS - The process is underway.
  • FAILED - The request to perform a batch prediction did not run to completion. It is not usable.
  • COMPLETED - The batch prediction process completed successfully.
  • DELETED - The BatchPrediction is marked as deleted. It is not usable.

$sel:lastUpdatedAt:BatchPrediction', batchPrediction_lastUpdatedAt - The time of the most recent edit to the BatchPrediction. The time is expressed in epoch time.

$sel:createdAt:BatchPrediction', batchPrediction_createdAt - The time that the BatchPrediction was created. The time is expressed in epoch time.

$sel:computeTime:BatchPrediction', batchPrediction_computeTime - Undocumented member.

$sel:inputDataLocationS3:BatchPrediction', batchPrediction_inputDataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:mLModelId:BatchPrediction', batchPrediction_mLModelId - The ID of the MLModel that generated predictions for the BatchPrediction request.

$sel:batchPredictionDataSourceId:BatchPrediction', batchPrediction_batchPredictionDataSourceId - The ID of the DataSource that points to the group of observations to predict.

$sel:totalRecordCount:BatchPrediction', batchPrediction_totalRecordCount - Undocumented member.

$sel:startedAt:BatchPrediction', batchPrediction_startedAt - Undocumented member.

$sel:batchPredictionId:BatchPrediction', batchPrediction_batchPredictionId - The ID assigned to the BatchPrediction at creation. This value should be identical to the value of the BatchPredictionID in the request.

$sel:finishedAt:BatchPrediction', batchPrediction_finishedAt - Undocumented member.

$sel:invalidRecordCount:BatchPrediction', batchPrediction_invalidRecordCount - Undocumented member.

$sel:createdByIamUser:BatchPrediction', batchPrediction_createdByIamUser - The AWS user account that invoked the BatchPrediction. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:BatchPrediction', batchPrediction_name - A user-supplied name or description of the BatchPrediction.

$sel:message:BatchPrediction', batchPrediction_message - A description of the most recent details about processing the batch prediction request.

$sel:outputUri:BatchPrediction', batchPrediction_outputUri - The location of an Amazon S3 bucket or directory to receive the operation results. The following substrings are not allowed in the s3 key portion of the outputURI field: ':', '//', '/./', '/../'.

DataSource

data DataSource Source #

Represents the output of the GetDataSource operation.

The content consists of the detailed metadata and data file information and the current status of the DataSource.

See: newDataSource smart constructor.

Instances

Instances details
Eq DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

Read DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

Show DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

Generic DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

Associated Types

type Rep DataSource :: Type -> Type #

NFData DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

Methods

rnf :: DataSource -> () #

Hashable DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

FromJSON DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

type Rep DataSource Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.DataSource

type Rep DataSource = D1 ('MetaData "DataSource" "Amazonka.MachineLearning.Types.DataSource" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "DataSource'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "numberOfFiles") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))) :*: (S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))) :*: ((S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "dataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "rDSMetadata") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RDSMetadata)) :*: (S1 ('MetaSel ('Just "dataSizeInBytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))))) :*: (((S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "dataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "computeStatistics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "redshiftMetadata") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RedshiftMetadata)) :*: (S1 ('MetaSel ('Just "dataRearrangement") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "roleARN") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))))))

newDataSource :: DataSource Source #

Create a value of DataSource with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:DataSource', dataSource_status - The current status of the DataSource. This element can have one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create a DataSource.
  • INPROGRESS - The creation process is underway.
  • FAILED - The request to create a DataSource did not run to completion. It is not usable.
  • COMPLETED - The creation process completed successfully.
  • DELETED - The DataSource is marked as deleted. It is not usable.

$sel:numberOfFiles:DataSource', dataSource_numberOfFiles - The number of data files referenced by the DataSource.

$sel:lastUpdatedAt:DataSource', dataSource_lastUpdatedAt - The time of the most recent edit to the BatchPrediction. The time is expressed in epoch time.

$sel:createdAt:DataSource', dataSource_createdAt - The time that the DataSource was created. The time is expressed in epoch time.

$sel:computeTime:DataSource', dataSource_computeTime - Undocumented member.

$sel:dataSourceId:DataSource', dataSource_dataSourceId - The ID that is assigned to the DataSource during creation.

$sel:rDSMetadata:DataSource', dataSource_rDSMetadata - Undocumented member.

$sel:dataSizeInBytes:DataSource', dataSource_dataSizeInBytes - The total number of observations contained in the data files that the DataSource references.

$sel:startedAt:DataSource', dataSource_startedAt - Undocumented member.

$sel:finishedAt:DataSource', dataSource_finishedAt - Undocumented member.

$sel:createdByIamUser:DataSource', dataSource_createdByIamUser - The AWS user account from which the DataSource was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:DataSource', dataSource_name - A user-supplied name or description of the DataSource.

$sel:dataLocationS3:DataSource', dataSource_dataLocationS3 - The location and name of the data in Amazon Simple Storage Service (Amazon S3) that is used by a DataSource.

$sel:computeStatistics:DataSource', dataSource_computeStatistics - The parameter is true if statistics need to be generated from the observation data.

$sel:message:DataSource', dataSource_message - A description of the most recent details about creating the DataSource.

$sel:redshiftMetadata:DataSource', dataSource_redshiftMetadata - Undocumented member.

$sel:dataRearrangement:DataSource', dataSource_dataRearrangement - A JSON string that represents the splitting and rearrangement requirement used when this DataSource was created.

$sel:roleARN:DataSource', dataSource_roleARN - Undocumented member.

Evaluation

data Evaluation Source #

Represents the output of GetEvaluation operation.

The content consists of the detailed metadata and data file information and the current status of the Evaluation.

See: newEvaluation smart constructor.

Instances

Instances details
Eq Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

Read Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

Show Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

Generic Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

Associated Types

type Rep Evaluation :: Type -> Type #

NFData Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

Methods

rnf :: Evaluation -> () #

Hashable Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

FromJSON Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

type Rep Evaluation Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Evaluation

type Rep Evaluation = D1 ('MetaData "Evaluation" "Amazonka.MachineLearning.Types.Evaluation" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "Evaluation'" 'PrefixI 'True) (((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: (S1 ('MetaSel ('Just "performanceMetrics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe PerformanceMetrics)) :*: S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))) :*: ((S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))) :*: (S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))) :*: ((S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "evaluationId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "evaluationDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))))

newEvaluation :: Evaluation Source #

Create a value of Evaluation with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:Evaluation', evaluation_status - The status of the evaluation. This element can have one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to evaluate an MLModel.
  • INPROGRESS - The evaluation is underway.
  • FAILED - The request to evaluate an MLModel did not run to completion. It is not usable.
  • COMPLETED - The evaluation process completed successfully.
  • DELETED - The Evaluation is marked as deleted. It is not usable.

$sel:performanceMetrics:Evaluation', evaluation_performanceMetrics - Measurements of how well the MLModel performed, using observations referenced by the DataSource. One of the following metrics is returned, based on the type of the MLModel:

  • BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.
  • RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
  • MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to measure performance.

For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.

$sel:lastUpdatedAt:Evaluation', evaluation_lastUpdatedAt - The time of the most recent edit to the Evaluation. The time is expressed in epoch time.

$sel:createdAt:Evaluation', evaluation_createdAt - The time that the Evaluation was created. The time is expressed in epoch time.

$sel:computeTime:Evaluation', evaluation_computeTime - Undocumented member.

$sel:inputDataLocationS3:Evaluation', evaluation_inputDataLocationS3 - The location and name of the data in Amazon Simple Storage Server (Amazon S3) that is used in the evaluation.

$sel:mLModelId:Evaluation', evaluation_mLModelId - The ID of the MLModel that is the focus of the evaluation.

$sel:startedAt:Evaluation', evaluation_startedAt - Undocumented member.

$sel:finishedAt:Evaluation', evaluation_finishedAt - Undocumented member.

$sel:createdByIamUser:Evaluation', evaluation_createdByIamUser - The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:Evaluation', evaluation_name - A user-supplied name or description of the Evaluation.

$sel:evaluationId:Evaluation', evaluation_evaluationId - The ID that is assigned to the Evaluation at creation.

$sel:message:Evaluation', evaluation_message - A description of the most recent details about evaluating the MLModel.

$sel:evaluationDataSourceId:Evaluation', evaluation_evaluationDataSourceId - The ID of the DataSource that is used to evaluate the MLModel.

MLModel

data MLModel Source #

Represents the output of a GetMLModel operation.

The content consists of the detailed metadata and the current status of the MLModel.

See: newMLModel smart constructor.

Instances

Instances details
Eq MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Methods

(==) :: MLModel -> MLModel -> Bool #

(/=) :: MLModel -> MLModel -> Bool #

Read MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Show MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Generic MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Associated Types

type Rep MLModel :: Type -> Type #

Methods

from :: MLModel -> Rep MLModel x #

to :: Rep MLModel x -> MLModel #

NFData MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Methods

rnf :: MLModel -> () #

Hashable MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

Methods

hashWithSalt :: Int -> MLModel -> Int #

hash :: MLModel -> Int #

FromJSON MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

type Rep MLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.MLModel

type Rep MLModel = D1 ('MetaData "MLModel" "Amazonka.MachineLearning.Types.MLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "MLModel'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EntityStatus)) :*: S1 ('MetaSel ('Just "lastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "trainingParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text))) :*: S1 ('MetaSel ('Just "scoreThresholdLastUpdatedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))) :*: ((S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "computeTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer))) :*: (S1 ('MetaSel ('Just "inputDataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "sizeInBytes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)))))) :*: (((S1 ('MetaSel ('Just "startedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "scoreThreshold") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))) :*: (S1 ('MetaSel ('Just "finishedAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "algorithm") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Algorithm)) :*: S1 ('MetaSel ('Just "createdByIamUser") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))) :*: ((S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "endpointInfo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RealtimeEndpointInfo))) :*: (S1 ('MetaSel ('Just "trainingDataSourceId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "mLModelType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe MLModelType))))))))

newMLModel :: MLModel Source #

Create a value of MLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:MLModel', mLModel_status - The current status of an MLModel. This element can have one of the following values:

  • PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create an MLModel.
  • INPROGRESS - The creation process is underway.
  • FAILED - The request to create an MLModel didn't run to completion. The model isn't usable.
  • COMPLETED - The creation process completed successfully.
  • DELETED - The MLModel is marked as deleted. It isn't usable.

$sel:lastUpdatedAt:MLModel', mLModel_lastUpdatedAt - The time of the most recent edit to the MLModel. The time is expressed in epoch time.

$sel:trainingParameters:MLModel', mLModel_trainingParameters - A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs.

The following is the current set of training parameters:

  • sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.

    The value is an integer that ranges from 100000 to 2147483648. The default value is 33554432.

  • sgd.maxPasses - The number of times that the training process traverses the observations to build the MLModel. The value is an integer that ranges from 1 to 10000. The default value is 10.
  • sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values are auto and none. The default value is none.
  • sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which controls overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used when L2 is specified. Use this parameter sparingly.

  • sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as 1.0E-08.

    The value is a double that ranges from 0 to MAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used when L1 is specified. Use this parameter sparingly.

$sel:scoreThresholdLastUpdatedAt:MLModel', mLModel_scoreThresholdLastUpdatedAt - The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.

$sel:createdAt:MLModel', mLModel_createdAt - The time that the MLModel was created. The time is expressed in epoch time.

$sel:computeTime:MLModel', mLModel_computeTime - Undocumented member.

$sel:inputDataLocationS3:MLModel', mLModel_inputDataLocationS3 - The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

$sel:mLModelId:MLModel', mLModel_mLModelId - The ID assigned to the MLModel at creation.

$sel:sizeInBytes:MLModel', mLModel_sizeInBytes - Undocumented member.

$sel:startedAt:MLModel', mLModel_startedAt - Undocumented member.

$sel:scoreThreshold:MLModel', mLModel_scoreThreshold - Undocumented member.

$sel:finishedAt:MLModel', mLModel_finishedAt - Undocumented member.

$sel:algorithm:MLModel', mLModel_algorithm - The algorithm used to train the MLModel. The following algorithm is supported:

  • SGD -- Stochastic gradient descent. The goal of SGD is to minimize the gradient of the loss function.

$sel:createdByIamUser:MLModel', mLModel_createdByIamUser - The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

$sel:name:MLModel', mLModel_name - A user-supplied name or description of the MLModel.

$sel:endpointInfo:MLModel', mLModel_endpointInfo - The current endpoint of the MLModel.

$sel:trainingDataSourceId:MLModel', mLModel_trainingDataSourceId - The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.

$sel:message:MLModel', mLModel_message - A description of the most recent details about accessing the MLModel.

$sel:mLModelType:MLModel', mLModel_mLModelType - Identifies the MLModel category. The following are the available types:

  • REGRESSION - Produces a numeric result. For example, "What price should a house be listed at?"
  • BINARY - Produces one of two possible results. For example, "Is this a child-friendly web site?".
  • MULTICLASS - Produces one of several possible results. For example, "Is this a HIGH-, LOW-, or MEDIUM-risk trade?".

PerformanceMetrics

data PerformanceMetrics Source #

Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel:

  • BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.
  • RegressionRMSE: The regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
  • MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to measure performance.

For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.

See: newPerformanceMetrics smart constructor.

Instances

Instances details
Eq PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Read PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Show PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Generic PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Associated Types

type Rep PerformanceMetrics :: Type -> Type #

NFData PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Methods

rnf :: PerformanceMetrics -> () #

Hashable PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

FromJSON PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

type Rep PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

type Rep PerformanceMetrics = D1 ('MetaData "PerformanceMetrics" "Amazonka.MachineLearning.Types.PerformanceMetrics" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "PerformanceMetrics'" 'PrefixI 'True) (S1 ('MetaSel ('Just "properties") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text)))))

newPerformanceMetrics :: PerformanceMetrics Source #

Create a value of PerformanceMetrics with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:properties:PerformanceMetrics', performanceMetrics_properties - Undocumented member.

Prediction

data Prediction Source #

The output from a Predict operation:

  • Details - Contains the following attributes: DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASS DetailsAttributes.ALGORITHM - SGD
  • PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request.
  • PredictedScores - Contains the raw classification score corresponding to each label.
  • PredictedValue - Present for a REGRESSION MLModel request.

See: newPrediction smart constructor.

Instances

Instances details
Eq Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

Read Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

Show Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

Generic Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

Associated Types

type Rep Prediction :: Type -> Type #

NFData Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

Methods

rnf :: Prediction -> () #

Hashable Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

FromJSON Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

type Rep Prediction Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Prediction

type Rep Prediction = D1 ('MetaData "Prediction" "Amazonka.MachineLearning.Types.Prediction" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "Prediction'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "predictedValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "predictedLabel") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "predictedScores") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Double))) :*: S1 ('MetaSel ('Just "details") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap DetailsAttributes Text))))))

newPrediction :: Prediction Source #

Create a value of Prediction with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:predictedValue:Prediction', prediction_predictedValue - The prediction value for REGRESSION MLModel.

$sel:predictedLabel:Prediction', prediction_predictedLabel - The prediction label for either a BINARY or MULTICLASS MLModel.

$sel:predictedScores:Prediction', prediction_predictedScores - Undocumented member.

$sel:details:Prediction', prediction_details - Undocumented member.

RDSDataSpec

data RDSDataSpec Source #

The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource.

See: newRDSDataSpec smart constructor.

Instances

Instances details
Eq RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Read RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Show RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Generic RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Associated Types

type Rep RDSDataSpec :: Type -> Type #

NFData RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Methods

rnf :: RDSDataSpec -> () #

Hashable RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

ToJSON RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

type Rep RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

newRDSDataSpec Source #

Create a value of RDSDataSpec with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSchemaUri:RDSDataSpec', rDSDataSpec_dataSchemaUri - The Amazon S3 location of the DataSchema.

$sel:dataSchema:RDSDataSpec', rDSDataSpec_dataSchema - A JSON string that represents the schema for an Amazon RDS DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

A DataSchema is not required if you specify a DataSchemaUri

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

$sel:dataRearrangement:RDSDataSpec', rDSDataSpec_dataRearrangement - A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

$sel:databaseInformation:RDSDataSpec', rDSDataSpec_databaseInformation - Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.

$sel:selectSqlQuery:RDSDataSpec', rDSDataSpec_selectSqlQuery - The query that is used to retrieve the observation data for the DataSource.

$sel:databaseCredentials:RDSDataSpec', rDSDataSpec_databaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.

$sel:s3StagingLocation:RDSDataSpec', rDSDataSpec_s3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.

$sel:resourceRole:RDSDataSpec', rDSDataSpec_resourceRole - The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.

$sel:serviceRole:RDSDataSpec', rDSDataSpec_serviceRole - The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

$sel:subnetId:RDSDataSpec', rDSDataSpec_subnetId - The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.

$sel:securityGroupIds:RDSDataSpec', rDSDataSpec_securityGroupIds - The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.

RDSDatabase

data RDSDatabase Source #

The database details of an Amazon RDS database.

See: newRDSDatabase smart constructor.

Constructors

RDSDatabase' Text Text 

Instances

Instances details
Eq RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

Read RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

Show RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

Generic RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

Associated Types

type Rep RDSDatabase :: Type -> Type #

NFData RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

Methods

rnf :: RDSDatabase -> () #

Hashable RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

ToJSON RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

FromJSON RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

type Rep RDSDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabase

type Rep RDSDatabase = D1 ('MetaData "RDSDatabase" "Amazonka.MachineLearning.Types.RDSDatabase" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RDSDatabase'" 'PrefixI 'True) (S1 ('MetaSel ('Just "instanceIdentifier") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "databaseName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newRDSDatabase Source #

Create a value of RDSDatabase with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:instanceIdentifier:RDSDatabase', rDSDatabase_instanceIdentifier - The ID of an RDS DB instance.

$sel:databaseName:RDSDatabase', rDSDatabase_databaseName - Undocumented member.

RDSDatabaseCredentials

data RDSDatabaseCredentials Source #

The database credentials to connect to a database on an RDS DB instance.

See: newRDSDatabaseCredentials smart constructor.

Instances

Instances details
Eq RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

Read RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

Show RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

Generic RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

Associated Types

type Rep RDSDatabaseCredentials :: Type -> Type #

NFData RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

Methods

rnf :: RDSDatabaseCredentials -> () #

Hashable RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

ToJSON RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

type Rep RDSDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDatabaseCredentials

type Rep RDSDatabaseCredentials = D1 ('MetaData "RDSDatabaseCredentials" "Amazonka.MachineLearning.Types.RDSDatabaseCredentials" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RDSDatabaseCredentials'" 'PrefixI 'True) (S1 ('MetaSel ('Just "username") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "password") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newRDSDatabaseCredentials Source #

Create a value of RDSDatabaseCredentials with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:username:RDSDatabaseCredentials', rDSDatabaseCredentials_username - Undocumented member.

$sel:password:RDSDatabaseCredentials', rDSDatabaseCredentials_password - Undocumented member.

RDSMetadata

data RDSMetadata Source #

The datasource details that are specific to Amazon RDS.

See: newRDSMetadata smart constructor.

Instances

Instances details
Eq RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

Read RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

Show RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

Generic RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

Associated Types

type Rep RDSMetadata :: Type -> Type #

NFData RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

Methods

rnf :: RDSMetadata -> () #

Hashable RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

FromJSON RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

type Rep RDSMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSMetadata

type Rep RDSMetadata = D1 ('MetaData "RDSMetadata" "Amazonka.MachineLearning.Types.RDSMetadata" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RDSMetadata'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "selectSqlQuery") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "dataPipelineId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "database") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RDSDatabase)))) :*: (S1 ('MetaSel ('Just "databaseUserName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "resourceRole") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "serviceRole") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))))

newRDSMetadata :: RDSMetadata Source #

Create a value of RDSMetadata with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:selectSqlQuery:RDSMetadata', rDSMetadata_selectSqlQuery - The SQL query that is supplied during CreateDataSourceFromRDS. Returns only if Verbose is true in GetDataSourceInput.

$sel:dataPipelineId:RDSMetadata', rDSMetadata_dataPipelineId - The ID of the Data Pipeline instance that is used to carry to copy data from Amazon RDS to Amazon S3. You can use the ID to find details about the instance in the Data Pipeline console.

$sel:database:RDSMetadata', rDSMetadata_database - The database details required to connect to an Amazon RDS.

$sel:databaseUserName:RDSMetadata', rDSMetadata_databaseUserName - Undocumented member.

$sel:resourceRole:RDSMetadata', rDSMetadata_resourceRole - The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to carry out the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

$sel:serviceRole:RDSMetadata', rDSMetadata_serviceRole - The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

RealtimeEndpointInfo

data RealtimeEndpointInfo Source #

Describes the real-time endpoint information for an MLModel.

See: newRealtimeEndpointInfo smart constructor.

Instances

Instances details
Eq RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

Read RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

Show RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

Generic RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

Associated Types

type Rep RealtimeEndpointInfo :: Type -> Type #

NFData RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

Methods

rnf :: RealtimeEndpointInfo -> () #

Hashable RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

FromJSON RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

type Rep RealtimeEndpointInfo Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RealtimeEndpointInfo

type Rep RealtimeEndpointInfo = D1 ('MetaData "RealtimeEndpointInfo" "Amazonka.MachineLearning.Types.RealtimeEndpointInfo" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RealtimeEndpointInfo'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "createdAt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "endpointUrl") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "endpointStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RealtimeEndpointStatus)) :*: S1 ('MetaSel ('Just "peakRequestsPerSecond") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)))))

newRealtimeEndpointInfo :: RealtimeEndpointInfo Source #

Create a value of RealtimeEndpointInfo with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:createdAt:RealtimeEndpointInfo', realtimeEndpointInfo_createdAt - The time that the request to create the real-time endpoint for the MLModel was received. The time is expressed in epoch time.

$sel:endpointUrl:RealtimeEndpointInfo', realtimeEndpointInfo_endpointUrl - The URI that specifies where to send real-time prediction requests for the MLModel.

Note: The application must wait until the real-time endpoint is ready before using this URI.

$sel:endpointStatus:RealtimeEndpointInfo', realtimeEndpointInfo_endpointStatus - The current status of the real-time endpoint for the MLModel. This element can have one of the following values:

  • NONE - Endpoint does not exist or was previously deleted.
  • READY - Endpoint is ready to be used for real-time predictions.
  • UPDATING - Updating/creating the endpoint.

$sel:peakRequestsPerSecond:RealtimeEndpointInfo', realtimeEndpointInfo_peakRequestsPerSecond - The maximum processing rate for the real-time endpoint for MLModel, measured in incoming requests per second.

RedshiftDataSpec

data RedshiftDataSpec Source #

Describes the data specification of an Amazon Redshift DataSource.

See: newRedshiftDataSpec smart constructor.

Instances

Instances details
Eq RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

Read RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

Show RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

Generic RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

Associated Types

type Rep RedshiftDataSpec :: Type -> Type #

NFData RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

Methods

rnf :: RedshiftDataSpec -> () #

Hashable RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

ToJSON RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

type Rep RedshiftDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDataSpec

type Rep RedshiftDataSpec = D1 ('MetaData "RedshiftDataSpec" "Amazonka.MachineLearning.Types.RedshiftDataSpec" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RedshiftDataSpec'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "dataSchemaUri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "dataSchema") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "dataRearrangement") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "databaseInformation") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 RedshiftDatabase) :*: S1 ('MetaSel ('Just "selectSqlQuery") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "databaseCredentials") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 RedshiftDatabaseCredentials) :*: S1 ('MetaSel ('Just "s3StagingLocation") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))

newRedshiftDataSpec Source #

Create a value of RedshiftDataSpec with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSchemaUri:RedshiftDataSpec', redshiftDataSpec_dataSchemaUri - Describes the schema location for an Amazon Redshift DataSource.

$sel:dataSchema:RedshiftDataSpec', redshiftDataSpec_dataSchema - A JSON string that represents the schema for an Amazon Redshift DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

A DataSchema is not required if you specify a DataSchemaUri.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

$sel:dataRearrangement:RedshiftDataSpec', redshiftDataSpec_dataRearrangement - A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

$sel:databaseInformation:RedshiftDataSpec', redshiftDataSpec_databaseInformation - Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.

$sel:selectSqlQuery:RedshiftDataSpec', redshiftDataSpec_selectSqlQuery - Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource.

$sel:databaseCredentials:RedshiftDataSpec', redshiftDataSpec_databaseCredentials - Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.

$sel:s3StagingLocation:RedshiftDataSpec', redshiftDataSpec_s3StagingLocation - Describes an Amazon S3 location to store the result set of the SelectSqlQuery query.

RedshiftDatabase

data RedshiftDatabase Source #

Describes the database details required to connect to an Amazon Redshift database.

See: newRedshiftDatabase smart constructor.

Instances

Instances details
Eq RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

Read RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

Show RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

Generic RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

Associated Types

type Rep RedshiftDatabase :: Type -> Type #

NFData RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

Methods

rnf :: RedshiftDatabase -> () #

Hashable RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

ToJSON RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

FromJSON RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

type Rep RedshiftDatabase Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabase

type Rep RedshiftDatabase = D1 ('MetaData "RedshiftDatabase" "Amazonka.MachineLearning.Types.RedshiftDatabase" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RedshiftDatabase'" 'PrefixI 'True) (S1 ('MetaSel ('Just "databaseName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "clusterIdentifier") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newRedshiftDatabase Source #

Create a value of RedshiftDatabase with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:databaseName:RedshiftDatabase', redshiftDatabase_databaseName - Undocumented member.

$sel:clusterIdentifier:RedshiftDatabase', redshiftDatabase_clusterIdentifier - Undocumented member.

RedshiftDatabaseCredentials

data RedshiftDatabaseCredentials Source #

Describes the database credentials for connecting to a database on an Amazon Redshift cluster.

See: newRedshiftDatabaseCredentials smart constructor.

Instances

Instances details
Eq RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

Read RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

Show RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

Generic RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

Associated Types

type Rep RedshiftDatabaseCredentials :: Type -> Type #

NFData RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

Hashable RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

ToJSON RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

type Rep RedshiftDatabaseCredentials Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials

type Rep RedshiftDatabaseCredentials = D1 ('MetaData "RedshiftDatabaseCredentials" "Amazonka.MachineLearning.Types.RedshiftDatabaseCredentials" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RedshiftDatabaseCredentials'" 'PrefixI 'True) (S1 ('MetaSel ('Just "username") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "password") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newRedshiftDatabaseCredentials Source #

Create a value of RedshiftDatabaseCredentials with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:username:RedshiftDatabaseCredentials', redshiftDatabaseCredentials_username - Undocumented member.

$sel:password:RedshiftDatabaseCredentials', redshiftDatabaseCredentials_password - Undocumented member.

RedshiftMetadata

data RedshiftMetadata Source #

Describes the DataSource details specific to Amazon Redshift.

See: newRedshiftMetadata smart constructor.

Instances

Instances details
Eq RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

Read RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

Show RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

Generic RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

Associated Types

type Rep RedshiftMetadata :: Type -> Type #

NFData RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

Methods

rnf :: RedshiftMetadata -> () #

Hashable RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

FromJSON RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

type Rep RedshiftMetadata Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RedshiftMetadata

type Rep RedshiftMetadata = D1 ('MetaData "RedshiftMetadata" "Amazonka.MachineLearning.Types.RedshiftMetadata" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "RedshiftMetadata'" 'PrefixI 'True) (S1 ('MetaSel ('Just "selectSqlQuery") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "redshiftDatabase") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe RedshiftDatabase)) :*: S1 ('MetaSel ('Just "databaseUserName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))

newRedshiftMetadata :: RedshiftMetadata Source #

Create a value of RedshiftMetadata with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:selectSqlQuery:RedshiftMetadata', redshiftMetadata_selectSqlQuery - The SQL query that is specified during CreateDataSourceFromRedshift. Returns only if Verbose is true in GetDataSourceInput.

$sel:redshiftDatabase:RedshiftMetadata', redshiftMetadata_redshiftDatabase - Undocumented member.

$sel:databaseUserName:RedshiftMetadata', redshiftMetadata_databaseUserName - Undocumented member.

S3DataSpec

data S3DataSpec Source #

Describes the data specification of a DataSource.

See: newS3DataSpec smart constructor.

Instances

Instances details
Eq S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

Read S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

Show S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

Generic S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

Associated Types

type Rep S3DataSpec :: Type -> Type #

NFData S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

Methods

rnf :: S3DataSpec -> () #

Hashable S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

ToJSON S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

type Rep S3DataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.S3DataSpec

type Rep S3DataSpec = D1 ('MetaData "S3DataSpec" "Amazonka.MachineLearning.Types.S3DataSpec" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "S3DataSpec'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "dataSchema") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "dataSchemaLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "dataRearrangement") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "dataLocationS3") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))

newS3DataSpec Source #

Create a value of S3DataSpec with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSchema:S3DataSpec', s3DataSpec_dataSchema - A JSON string that represents the schema for an Amazon S3 DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

You must provide either the DataSchema or the DataSchemaLocationS3.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

$sel:dataSchemaLocationS3:S3DataSpec', s3DataSpec_dataSchemaLocationS3 - Describes the schema location in Amazon S3. You must provide either the DataSchema or the DataSchemaLocationS3.

$sel:dataRearrangement:S3DataSpec', s3DataSpec_dataRearrangement - A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

$sel:dataLocationS3:S3DataSpec', s3DataSpec_dataLocationS3 - The location of the data file(s) used by a DataSource. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.

Tag

data Tag Source #

A custom key-value pair associated with an ML object, such as an ML model.

See: newTag smart constructor.

Constructors

Tag' (Maybe Text) (Maybe Text) 

Instances

Instances details
Eq Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Methods

(==) :: Tag -> Tag -> Bool #

(/=) :: Tag -> Tag -> Bool #

Read Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Show Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Methods

showsPrec :: Int -> Tag -> ShowS #

show :: Tag -> String #

showList :: [Tag] -> ShowS #

Generic Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Associated Types

type Rep Tag :: Type -> Type #

Methods

from :: Tag -> Rep Tag x #

to :: Rep Tag x -> Tag #

NFData Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Methods

rnf :: Tag -> () #

Hashable Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

Methods

hashWithSalt :: Int -> Tag -> Int #

hash :: Tag -> Int #

ToJSON Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

FromJSON Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

type Rep Tag Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.Tag

type Rep Tag = D1 ('MetaData "Tag" "Amazonka.MachineLearning.Types.Tag" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "Tag'" 'PrefixI 'True) (S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "key") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))

newTag :: Tag Source #

Create a value of Tag with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:value:Tag', tag_value - An optional string, typically used to describe or define the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.

$sel:key:Tag', tag_key - A unique identifier for the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.