libZSservicesZSamazonka-mlZSamazonka-ml
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.MachineLearning.Types.RDSDataSpec

Description

 
Synopsis

Documentation

data RDSDataSpec Source #

The data specification of an Amazon Relational Database Service (Amazon RDS) DataSource.

See: newRDSDataSpec smart constructor.

Constructors

RDSDataSpec' 

Fields

  • dataSchemaUri :: Maybe Text

    The Amazon S3 location of the DataSchema.

  • dataSchema :: Maybe Text

    A JSON string that represents the schema for an Amazon RDS DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

    A DataSchema is not required if you specify a DataSchemaUri

    Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

    { "version": "1.0",

    "recordAnnotationFieldName": "F1",

    "recordWeightFieldName": "F2",

    "targetFieldName": "F3",

    "dataFormat": "CSV",

    "dataFileContainsHeader": true,

    "attributes": [

    { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

    "excludedVariableNames": [ "F6" ] }

  • dataRearrangement :: Maybe Text

    A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

    There are multiple parameters that control what data is used to create a datasource:

    • percentBegin

      Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

    • percentEnd

      Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

    • complement

      The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

      For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

      Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

      Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

    • strategy

      To change how Amazon ML splits the data for a datasource, use the strategy parameter.

      The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

      The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

      Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

      Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

      To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

      The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

      Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

      Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

  • databaseInformation :: RDSDatabase

    Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.

  • selectSqlQuery :: Text

    The query that is used to retrieve the observation data for the DataSource.

  • databaseCredentials :: RDSDatabaseCredentials

    The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.

  • s3StagingLocation :: Text

    The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.

  • resourceRole :: Text

    The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.

  • serviceRole :: Text

    The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

  • subnetId :: Text

    The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.

  • securityGroupIds :: [Text]

    The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.

Instances

Instances details
Eq RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Read RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Show RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Generic RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Associated Types

type Rep RDSDataSpec :: Type -> Type #

NFData RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

Methods

rnf :: RDSDataSpec -> () #

Hashable RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

ToJSON RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

type Rep RDSDataSpec Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.RDSDataSpec

newRDSDataSpec Source #

Create a value of RDSDataSpec with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:dataSchemaUri:RDSDataSpec', rDSDataSpec_dataSchemaUri - The Amazon S3 location of the DataSchema.

$sel:dataSchema:RDSDataSpec', rDSDataSpec_dataSchema - A JSON string that represents the schema for an Amazon RDS DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

A DataSchema is not required if you specify a DataSchemaUri

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

$sel:dataRearrangement:RDSDataSpec', rDSDataSpec_dataRearrangement - A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

$sel:databaseInformation:RDSDataSpec', rDSDataSpec_databaseInformation - Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.

$sel:selectSqlQuery:RDSDataSpec', rDSDataSpec_selectSqlQuery - The query that is used to retrieve the observation data for the DataSource.

$sel:databaseCredentials:RDSDataSpec', rDSDataSpec_databaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.

$sel:s3StagingLocation:RDSDataSpec', rDSDataSpec_s3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.

$sel:resourceRole:RDSDataSpec', rDSDataSpec_resourceRole - The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.

$sel:serviceRole:RDSDataSpec', rDSDataSpec_serviceRole - The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

$sel:subnetId:RDSDataSpec', rDSDataSpec_subnetId - The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.

$sel:securityGroupIds:RDSDataSpec', rDSDataSpec_securityGroupIds - The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.

rDSDataSpec_dataSchemaUri :: Lens' RDSDataSpec (Maybe Text) Source #

The Amazon S3 location of the DataSchema.

rDSDataSpec_dataSchema :: Lens' RDSDataSpec (Maybe Text) Source #

A JSON string that represents the schema for an Amazon RDS DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

A DataSchema is not required if you specify a DataSchemaUri

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

rDSDataSpec_dataRearrangement :: Lens' RDSDataSpec (Maybe Text) Source #

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}

rDSDataSpec_databaseInformation :: Lens' RDSDataSpec RDSDatabase Source #

Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.

rDSDataSpec_selectSqlQuery :: Lens' RDSDataSpec Text Source #

The query that is used to retrieve the observation data for the DataSource.

rDSDataSpec_databaseCredentials :: Lens' RDSDataSpec RDSDatabaseCredentials Source #

The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.

rDSDataSpec_s3StagingLocation :: Lens' RDSDataSpec Text Source #

The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using SelectSqlQuery is stored in this location.

rDSDataSpec_resourceRole :: Lens' RDSDataSpec Text Source #

The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see Role templates for data pipelines.

rDSDataSpec_serviceRole :: Lens' RDSDataSpec Text Source #

The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see Role templates for data pipelines.

rDSDataSpec_subnetId :: Lens' RDSDataSpec Text Source #

The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.

rDSDataSpec_securityGroupIds :: Lens' RDSDataSpec [Text] Source #

The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.