libZSservicesZSamazonka-mlZSamazonka-ml
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.MachineLearning.UpdateMLModel

Description

Updates the MLModelName and the ScoreThreshold of an MLModel.

You can use the GetMLModel operation to view the contents of the updated data element.

Synopsis

Creating a Request

data UpdateMLModel Source #

See: newUpdateMLModel smart constructor.

Constructors

UpdateMLModel' 

Fields

  • mLModelName :: Maybe Text

    A user-supplied name or description of the MLModel.

  • scoreThreshold :: Maybe Double

    The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction.

    Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.

  • mLModelId :: Text

    The ID assigned to the MLModel during creation.

Instances

Instances details
Eq UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Read UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Show UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Generic UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type Rep UpdateMLModel :: Type -> Type #

NFData UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Methods

rnf :: UpdateMLModel -> () #

Hashable UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToJSON UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

AWSRequest UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type AWSResponse UpdateMLModel #

ToHeaders UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToPath UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

ToQuery UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModel = D1 ('MetaData "UpdateMLModel" "Amazonka.MachineLearning.UpdateMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateMLModel'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "scoreThreshold") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))
type AWSResponse UpdateMLModel Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

newUpdateMLModel Source #

Create a value of UpdateMLModel with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelName:UpdateMLModel', updateMLModel_mLModelName - A user-supplied name or description of the MLModel.

$sel:scoreThreshold:UpdateMLModel', updateMLModel_scoreThreshold - The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction.

Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.

$sel:mLModelId:UpdateMLModel', updateMLModel_mLModelId - The ID assigned to the MLModel during creation.

Request Lenses

updateMLModel_mLModelName :: Lens' UpdateMLModel (Maybe Text) Source #

A user-supplied name or description of the MLModel.

updateMLModel_scoreThreshold :: Lens' UpdateMLModel (Maybe Double) Source #

The ScoreThreshold used in binary classification MLModel that marks the boundary between a positive prediction and a negative prediction.

Output values greater than or equal to the ScoreThreshold receive a positive result from the MLModel, such as true. Output values less than the ScoreThreshold receive a negative response from the MLModel, such as false.

updateMLModel_mLModelId :: Lens' UpdateMLModel Text Source #

The ID assigned to the MLModel during creation.

Destructuring the Response

data UpdateMLModelResponse Source #

Represents the output of an UpdateMLModel operation.

You can see the updated content by using the GetMLModel operation.

See: newUpdateMLModelResponse smart constructor.

Constructors

UpdateMLModelResponse' 

Fields

  • mLModelId :: Maybe Text

    The ID assigned to the MLModel during creation. This value should be identical to the value of the MLModelID in the request.

  • httpStatus :: Int

    The response's http status code.

Instances

Instances details
Eq UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Read UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Show UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Generic UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Associated Types

type Rep UpdateMLModelResponse :: Type -> Type #

NFData UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

Methods

rnf :: UpdateMLModelResponse -> () #

type Rep UpdateMLModelResponse Source # 
Instance details

Defined in Amazonka.MachineLearning.UpdateMLModel

type Rep UpdateMLModelResponse = D1 ('MetaData "UpdateMLModelResponse" "Amazonka.MachineLearning.UpdateMLModel" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "UpdateMLModelResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "mLModelId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))

newUpdateMLModelResponse Source #

Create a value of UpdateMLModelResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mLModelId:UpdateMLModel', updateMLModelResponse_mLModelId - The ID assigned to the MLModel during creation. This value should be identical to the value of the MLModelID in the request.

$sel:httpStatus:UpdateMLModelResponse', updateMLModelResponse_httpStatus - The response's http status code.

Response Lenses

updateMLModelResponse_mLModelId :: Lens' UpdateMLModelResponse (Maybe Text) Source #

The ID assigned to the MLModel during creation. This value should be identical to the value of the MLModelID in the request.