libZSservicesZSamazonka-mlZSamazonka-ml
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.MachineLearning.Types.PerformanceMetrics

Description

 
Synopsis

Documentation

data PerformanceMetrics Source #

Measurements of how well the MLModel performed on known observations. One of the following metrics is returned, based on the type of the MLModel:

  • BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique to measure performance.
  • RegressionRMSE: The regression MLModel uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.
  • MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to measure performance.

For more information about performance metrics, please see the Amazon Machine Learning Developer Guide.

See: newPerformanceMetrics smart constructor.

Instances

Instances details
Eq PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Read PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Show PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Generic PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Associated Types

type Rep PerformanceMetrics :: Type -> Type #

NFData PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

Methods

rnf :: PerformanceMetrics -> () #

Hashable PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

FromJSON PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

type Rep PerformanceMetrics Source # 
Instance details

Defined in Amazonka.MachineLearning.Types.PerformanceMetrics

type Rep PerformanceMetrics = D1 ('MetaData "PerformanceMetrics" "Amazonka.MachineLearning.Types.PerformanceMetrics" "libZSservicesZSamazonka-mlZSamazonka-ml" 'False) (C1 ('MetaCons "PerformanceMetrics'" 'PrefixI 'True) (S1 ('MetaSel ('Just "properties") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text)))))

newPerformanceMetrics :: PerformanceMetrics Source #

Create a value of PerformanceMetrics with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:properties:PerformanceMetrics', performanceMetrics_properties - Undocumented member.