Copyright | (c) 2013-2021 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay+amazonka@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Synopsis
- data TrainingJobDefinition = TrainingJobDefinition' {}
- newTrainingJobDefinition :: TrainingInputMode -> NonEmpty Channel -> OutputDataConfig -> ResourceConfig -> StoppingCondition -> TrainingJobDefinition
- trainingJobDefinition_hyperParameters :: Lens' TrainingJobDefinition (Maybe (HashMap Text Text))
- trainingJobDefinition_trainingInputMode :: Lens' TrainingJobDefinition TrainingInputMode
- trainingJobDefinition_inputDataConfig :: Lens' TrainingJobDefinition (NonEmpty Channel)
- trainingJobDefinition_outputDataConfig :: Lens' TrainingJobDefinition OutputDataConfig
- trainingJobDefinition_resourceConfig :: Lens' TrainingJobDefinition ResourceConfig
- trainingJobDefinition_stoppingCondition :: Lens' TrainingJobDefinition StoppingCondition
Documentation
data TrainingJobDefinition Source #
Defines the input needed to run a training job using the algorithm.
See: newTrainingJobDefinition
smart constructor.
TrainingJobDefinition' | |
|
Instances
newTrainingJobDefinition Source #
:: TrainingInputMode | |
-> NonEmpty Channel | |
-> OutputDataConfig | |
-> ResourceConfig | |
-> StoppingCondition | |
-> TrainingJobDefinition |
Create a value of TrainingJobDefinition
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:hyperParameters:TrainingJobDefinition'
, trainingJobDefinition_hyperParameters
- The hyperparameters used for the training job.
$sel:trainingInputMode:TrainingJobDefinition'
, trainingJobDefinition_trainingInputMode
- Undocumented member.
$sel:inputDataConfig:TrainingJobDefinition'
, trainingJobDefinition_inputDataConfig
- An array of Channel
objects, each of which specifies an input source.
$sel:outputDataConfig:TrainingJobDefinition'
, trainingJobDefinition_outputDataConfig
- the path to the S3 bucket where you want to store model artifacts.
Amazon SageMaker creates subfolders for the artifacts.
$sel:resourceConfig:TrainingJobDefinition'
, trainingJobDefinition_resourceConfig
- The resources, including the ML compute instances and ML storage
volumes, to use for model training.
$sel:stoppingCondition:TrainingJobDefinition'
, trainingJobDefinition_stoppingCondition
- Specifies a limit to how long a model training job can run. It also
specifies how long a managed Spot training job has to complete. When the
job reaches the time limit, Amazon SageMaker ends the training job. Use
this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.
trainingJobDefinition_hyperParameters :: Lens' TrainingJobDefinition (Maybe (HashMap Text Text)) Source #
The hyperparameters used for the training job.
trainingJobDefinition_trainingInputMode :: Lens' TrainingJobDefinition TrainingInputMode Source #
Undocumented member.
trainingJobDefinition_inputDataConfig :: Lens' TrainingJobDefinition (NonEmpty Channel) Source #
An array of Channel
objects, each of which specifies an input source.
trainingJobDefinition_outputDataConfig :: Lens' TrainingJobDefinition OutputDataConfig Source #
the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
trainingJobDefinition_resourceConfig :: Lens' TrainingJobDefinition ResourceConfig Source #
The resources, including the ML compute instances and ML storage volumes, to use for model training.
trainingJobDefinition_stoppingCondition :: Lens' TrainingJobDefinition StoppingCondition Source #
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.