libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.Types.TrainingJobDefinition

Description

 
Synopsis

Documentation

data TrainingJobDefinition Source #

Defines the input needed to run a training job using the algorithm.

See: newTrainingJobDefinition smart constructor.

Constructors

TrainingJobDefinition' 

Fields

  • hyperParameters :: Maybe (HashMap Text Text)

    The hyperparameters used for the training job.

  • trainingInputMode :: TrainingInputMode
     
  • inputDataConfig :: NonEmpty Channel

    An array of Channel objects, each of which specifies an input source.

  • outputDataConfig :: OutputDataConfig

    the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

  • resourceConfig :: ResourceConfig

    The resources, including the ML compute instances and ML storage volumes, to use for model training.

  • stoppingCondition :: StoppingCondition

    Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

    To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

Instances

Instances details
Eq TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

Read TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

Show TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

Generic TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

Associated Types

type Rep TrainingJobDefinition :: Type -> Type #

NFData TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

Methods

rnf :: TrainingJobDefinition -> () #

Hashable TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

ToJSON TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

FromJSON TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

type Rep TrainingJobDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.TrainingJobDefinition

type Rep TrainingJobDefinition = D1 ('MetaData "TrainingJobDefinition" "Amazonka.SageMaker.Types.TrainingJobDefinition" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "TrainingJobDefinition'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "hyperParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text))) :*: (S1 ('MetaSel ('Just "trainingInputMode") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 TrainingInputMode) :*: S1 ('MetaSel ('Just "inputDataConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (NonEmpty Channel)))) :*: (S1 ('MetaSel ('Just "outputDataConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 OutputDataConfig) :*: (S1 ('MetaSel ('Just "resourceConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 ResourceConfig) :*: S1 ('MetaSel ('Just "stoppingCondition") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 StoppingCondition)))))

newTrainingJobDefinition Source #

Create a value of TrainingJobDefinition with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:hyperParameters:TrainingJobDefinition', trainingJobDefinition_hyperParameters - The hyperparameters used for the training job.

$sel:trainingInputMode:TrainingJobDefinition', trainingJobDefinition_trainingInputMode - Undocumented member.

$sel:inputDataConfig:TrainingJobDefinition', trainingJobDefinition_inputDataConfig - An array of Channel objects, each of which specifies an input source.

$sel:outputDataConfig:TrainingJobDefinition', trainingJobDefinition_outputDataConfig - the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

$sel:resourceConfig:TrainingJobDefinition', trainingJobDefinition_resourceConfig - The resources, including the ML compute instances and ML storage volumes, to use for model training.

$sel:stoppingCondition:TrainingJobDefinition', trainingJobDefinition_stoppingCondition - Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.

trainingJobDefinition_hyperParameters :: Lens' TrainingJobDefinition (Maybe (HashMap Text Text)) Source #

The hyperparameters used for the training job.

trainingJobDefinition_inputDataConfig :: Lens' TrainingJobDefinition (NonEmpty Channel) Source #

An array of Channel objects, each of which specifies an input source.

trainingJobDefinition_outputDataConfig :: Lens' TrainingJobDefinition OutputDataConfig Source #

the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.

trainingJobDefinition_resourceConfig :: Lens' TrainingJobDefinition ResourceConfig Source #

The resources, including the ML compute instances and ML storage volumes, to use for model training.

trainingJobDefinition_stoppingCondition :: Lens' TrainingJobDefinition StoppingCondition Source #

Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts.