libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.Types.ResourceConfig

Description

 
Synopsis

Documentation

data ResourceConfig Source #

Describes the resources, including ML compute instances and ML storage volumes, to use for model training.

See: newResourceConfig smart constructor.

Constructors

ResourceConfig' 

Fields

  • volumeKmsKeyId :: Maybe Text

    The Amazon Web Services KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

    Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

    For a list of instance types that support local instance storage, see Instance Store Volumes.

    For more information about local instance storage encryption, see SSD Instance Store Volumes.

    The VolumeKmsKeyId can be in any of the following formats:

    • // KMS Key ID

      "1234abcd-12ab-34cd-56ef-1234567890ab"
    • // Amazon Resource Name (ARN) of a KMS Key

      "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
  • instanceType :: TrainingInstanceType

    The ML compute instance type.

  • instanceCount :: Natural

    The number of ML compute instances to use. For distributed training, provide a value greater than 1.

  • volumeSizeInGB :: Natural

    The size of the ML storage volume that you want to provision.

    ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

    You must specify sufficient ML storage for your scenario.

    Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

    Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

    For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

Instances

Instances details
Eq ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

Read ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

Show ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

Generic ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

Associated Types

type Rep ResourceConfig :: Type -> Type #

NFData ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

Methods

rnf :: ResourceConfig -> () #

Hashable ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

ToJSON ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

FromJSON ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

type Rep ResourceConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ResourceConfig

type Rep ResourceConfig = D1 ('MetaData "ResourceConfig" "Amazonka.SageMaker.Types.ResourceConfig" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "ResourceConfig'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "volumeKmsKeyId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "instanceType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 TrainingInstanceType)) :*: (S1 ('MetaSel ('Just "instanceCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Natural) :*: S1 ('MetaSel ('Just "volumeSizeInGB") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Natural))))

newResourceConfig Source #

Create a value of ResourceConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:volumeKmsKeyId:ResourceConfig', resourceConfig_volumeKmsKeyId - The Amazon Web Services KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

The VolumeKmsKeyId can be in any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"
  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

$sel:instanceType:ResourceConfig', resourceConfig_instanceType - The ML compute instance type.

$sel:instanceCount:ResourceConfig', resourceConfig_instanceCount - The number of ML compute instances to use. For distributed training, provide a value greater than 1.

$sel:volumeSizeInGB:ResourceConfig', resourceConfig_volumeSizeInGB - The size of the ML storage volume that you want to provision.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

You must specify sufficient ML storage for your scenario.

Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.

resourceConfig_volumeKmsKeyId :: Lens' ResourceConfig (Maybe Text) Source #

The Amazon Web Services KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job.

Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage.

For a list of instance types that support local instance storage, see Instance Store Volumes.

For more information about local instance storage encryption, see SSD Instance Store Volumes.

The VolumeKmsKeyId can be in any of the following formats:

  • // KMS Key ID

    "1234abcd-12ab-34cd-56ef-1234567890ab"
  • // Amazon Resource Name (ARN) of a KMS Key

    "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

resourceConfig_instanceCount :: Lens' ResourceConfig Natural Source #

The number of ML compute instances to use. For distributed training, provide a value greater than 1.

resourceConfig_volumeSizeInGB :: Lens' ResourceConfig Natural Source #

The size of the ML storage volume that you want to provision.

ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification.

You must specify sufficient ML storage for your scenario.

Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type.

Certain Nitro-based instances include local storage with a fixed total size, dependent on the instance type. When using these instances for training, Amazon SageMaker mounts the local instance storage instead of Amazon EBS gp2 storage. You can't request a VolumeSizeInGB greater than the total size of the local instance storage.

For a list of instance types that support local instance storage, including the total size per instance type, see Instance Store Volumes.