Copyright | (c) 2013-2021 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay+amazonka@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Synopsis
- data HyperParameterTrainingJobDefinition = HyperParameterTrainingJobDefinition' {
- tuningObjective :: Maybe HyperParameterTuningJobObjective
- checkpointConfig :: Maybe CheckpointConfig
- hyperParameterRanges :: Maybe ParameterRanges
- retryStrategy :: Maybe RetryStrategy
- enableNetworkIsolation :: Maybe Bool
- staticHyperParameters :: Maybe (HashMap Text Text)
- enableManagedSpotTraining :: Maybe Bool
- inputDataConfig :: Maybe (NonEmpty Channel)
- vpcConfig :: Maybe VpcConfig
- definitionName :: Maybe Text
- enableInterContainerTrafficEncryption :: Maybe Bool
- algorithmSpecification :: HyperParameterAlgorithmSpecification
- roleArn :: Text
- outputDataConfig :: OutputDataConfig
- resourceConfig :: ResourceConfig
- stoppingCondition :: StoppingCondition
- newHyperParameterTrainingJobDefinition :: HyperParameterAlgorithmSpecification -> Text -> OutputDataConfig -> ResourceConfig -> StoppingCondition -> HyperParameterTrainingJobDefinition
- hyperParameterTrainingJobDefinition_tuningObjective :: Lens' HyperParameterTrainingJobDefinition (Maybe HyperParameterTuningJobObjective)
- hyperParameterTrainingJobDefinition_checkpointConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe CheckpointConfig)
- hyperParameterTrainingJobDefinition_hyperParameterRanges :: Lens' HyperParameterTrainingJobDefinition (Maybe ParameterRanges)
- hyperParameterTrainingJobDefinition_retryStrategy :: Lens' HyperParameterTrainingJobDefinition (Maybe RetryStrategy)
- hyperParameterTrainingJobDefinition_enableNetworkIsolation :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool)
- hyperParameterTrainingJobDefinition_staticHyperParameters :: Lens' HyperParameterTrainingJobDefinition (Maybe (HashMap Text Text))
- hyperParameterTrainingJobDefinition_enableManagedSpotTraining :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool)
- hyperParameterTrainingJobDefinition_inputDataConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe (NonEmpty Channel))
- hyperParameterTrainingJobDefinition_vpcConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe VpcConfig)
- hyperParameterTrainingJobDefinition_definitionName :: Lens' HyperParameterTrainingJobDefinition (Maybe Text)
- hyperParameterTrainingJobDefinition_enableInterContainerTrafficEncryption :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool)
- hyperParameterTrainingJobDefinition_algorithmSpecification :: Lens' HyperParameterTrainingJobDefinition HyperParameterAlgorithmSpecification
- hyperParameterTrainingJobDefinition_roleArn :: Lens' HyperParameterTrainingJobDefinition Text
- hyperParameterTrainingJobDefinition_outputDataConfig :: Lens' HyperParameterTrainingJobDefinition OutputDataConfig
- hyperParameterTrainingJobDefinition_resourceConfig :: Lens' HyperParameterTrainingJobDefinition ResourceConfig
- hyperParameterTrainingJobDefinition_stoppingCondition :: Lens' HyperParameterTrainingJobDefinition StoppingCondition
Documentation
data HyperParameterTrainingJobDefinition Source #
Defines the training jobs launched by a hyperparameter tuning job.
See: newHyperParameterTrainingJobDefinition
smart constructor.
HyperParameterTrainingJobDefinition' | |
|
Instances
newHyperParameterTrainingJobDefinition Source #
Create a value of HyperParameterTrainingJobDefinition
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:tuningObjective:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_tuningObjective
- Undocumented member.
$sel:checkpointConfig:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_checkpointConfig
- Undocumented member.
$sel:hyperParameterRanges:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_hyperParameterRanges
- Undocumented member.
$sel:retryStrategy:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_retryStrategy
- The number of times to retry the job when the job fails due to an
InternalServerError
.
$sel:enableNetworkIsolation:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_enableNetworkIsolation
- Isolates the training container. No inbound or outbound network calls
can be made, except for calls between peers within a training cluster
for distributed training. If network isolation is used for training jobs
that are configured to use a VPC, Amazon SageMaker downloads and uploads
customer data and model artifacts through the specified VPC, but the
training container does not have network access.
$sel:staticHyperParameters:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_staticHyperParameters
- Specifies the values of hyperparameters that do not change for the
tuning job.
$sel:enableManagedSpotTraining:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_enableManagedSpotTraining
- A Boolean indicating whether managed spot training is enabled (True
)
or not (False
).
$sel:inputDataConfig:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_inputDataConfig
- An array of Channel objects that specify the input for the training jobs
that the tuning job launches.
$sel:vpcConfig:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_vpcConfig
- The VpcConfig object that specifies the VPC that you want the training
jobs that this hyperparameter tuning job launches to connect to. Control
access to and from your training container by configuring the VPC. For
more information, see
Protect Training Jobs by Using an Amazon Virtual Private Cloud.
$sel:definitionName:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_definitionName
- The job definition name.
$sel:enableInterContainerTrafficEncryption:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_enableInterContainerTrafficEncryption
- To encrypt all communications between ML compute instances in
distributed training, choose True
. Encryption provides greater
security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute
instances, especially if you use a deep learning algorithm in
distributed training.
$sel:algorithmSpecification:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_algorithmSpecification
- The HyperParameterAlgorithmSpecification object that specifies the
resource algorithm to use for the training jobs that the tuning job
launches.
$sel:roleArn:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_roleArn
- The Amazon Resource Name (ARN) of the IAM role associated with the
training jobs that the tuning job launches.
$sel:outputDataConfig:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_outputDataConfig
- Specifies the path to the Amazon S3 bucket where you store model
artifacts from the training jobs that the tuning job launches.
$sel:resourceConfig:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_resourceConfig
- The resources, including the compute instances and storage volumes, to
use for the training jobs that the tuning job launches.
Storage volumes store model artifacts and incremental states. Training
algorithms might also use storage volumes for scratch space. If you want
Amazon SageMaker to use the storage volume to store the training data,
choose File
as the TrainingInputMode
in the algorithm specification.
For distributed training algorithms, specify an instance count greater
than 1.
$sel:stoppingCondition:HyperParameterTrainingJobDefinition'
, hyperParameterTrainingJobDefinition_stoppingCondition
- Specifies a limit to how long a model hyperparameter training job can
run. It also specifies how long a managed spot training job has to
complete. When the job reaches the time limit, Amazon SageMaker ends the
training job. Use this API to cap model training costs.
hyperParameterTrainingJobDefinition_tuningObjective :: Lens' HyperParameterTrainingJobDefinition (Maybe HyperParameterTuningJobObjective) Source #
Undocumented member.
hyperParameterTrainingJobDefinition_checkpointConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe CheckpointConfig) Source #
Undocumented member.
hyperParameterTrainingJobDefinition_hyperParameterRanges :: Lens' HyperParameterTrainingJobDefinition (Maybe ParameterRanges) Source #
Undocumented member.
hyperParameterTrainingJobDefinition_retryStrategy :: Lens' HyperParameterTrainingJobDefinition (Maybe RetryStrategy) Source #
The number of times to retry the job when the job fails due to an
InternalServerError
.
hyperParameterTrainingJobDefinition_enableNetworkIsolation :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool) Source #
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
hyperParameterTrainingJobDefinition_staticHyperParameters :: Lens' HyperParameterTrainingJobDefinition (Maybe (HashMap Text Text)) Source #
Specifies the values of hyperparameters that do not change for the tuning job.
hyperParameterTrainingJobDefinition_enableManagedSpotTraining :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool) Source #
A Boolean indicating whether managed spot training is enabled (True
)
or not (False
).
hyperParameterTrainingJobDefinition_inputDataConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe (NonEmpty Channel)) Source #
An array of Channel objects that specify the input for the training jobs that the tuning job launches.
hyperParameterTrainingJobDefinition_vpcConfig :: Lens' HyperParameterTrainingJobDefinition (Maybe VpcConfig) Source #
The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
hyperParameterTrainingJobDefinition_definitionName :: Lens' HyperParameterTrainingJobDefinition (Maybe Text) Source #
The job definition name.
hyperParameterTrainingJobDefinition_enableInterContainerTrafficEncryption :: Lens' HyperParameterTrainingJobDefinition (Maybe Bool) Source #
To encrypt all communications between ML compute instances in
distributed training, choose True
. Encryption provides greater
security for distributed training, but training might take longer. How
long it takes depends on the amount of communication between compute
instances, especially if you use a deep learning algorithm in
distributed training.
hyperParameterTrainingJobDefinition_algorithmSpecification :: Lens' HyperParameterTrainingJobDefinition HyperParameterAlgorithmSpecification Source #
The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.
hyperParameterTrainingJobDefinition_roleArn :: Lens' HyperParameterTrainingJobDefinition Text Source #
The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.
hyperParameterTrainingJobDefinition_outputDataConfig :: Lens' HyperParameterTrainingJobDefinition OutputDataConfig Source #
Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.
hyperParameterTrainingJobDefinition_resourceConfig :: Lens' HyperParameterTrainingJobDefinition ResourceConfig Source #
The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.
Storage volumes store model artifacts and incremental states. Training
algorithms might also use storage volumes for scratch space. If you want
Amazon SageMaker to use the storage volume to store the training data,
choose File
as the TrainingInputMode
in the algorithm specification.
For distributed training algorithms, specify an instance count greater
than 1.
hyperParameterTrainingJobDefinition_stoppingCondition :: Lens' HyperParameterTrainingJobDefinition StoppingCondition Source #
Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.