libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.CreateHyperParameterTuningJob

Description

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

Synopsis

Creating a Request

data CreateHyperParameterTuningJob Source #

See: newCreateHyperParameterTuningJob smart constructor.

Constructors

CreateHyperParameterTuningJob' 

Fields

  • trainingJobDefinition :: Maybe HyperParameterTrainingJobDefinition

    The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

  • warmStartConfig :: Maybe HyperParameterTuningJobWarmStartConfig

    Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

    All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

    All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

  • tags :: Maybe [Tag]

    An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

    Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

  • trainingJobDefinitions :: Maybe (NonEmpty HyperParameterTrainingJobDefinition)

    A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

  • hyperParameterTuningJobName :: Text

    The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

  • hyperParameterTuningJobConfig :: HyperParameterTuningJobConfig

    The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.

Instances

Instances details
Eq CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Read CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Show CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Generic CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Associated Types

type Rep CreateHyperParameterTuningJob :: Type -> Type #

NFData CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Hashable CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

ToJSON CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

AWSRequest CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

ToHeaders CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

ToPath CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

ToQuery CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

type Rep CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

type Rep CreateHyperParameterTuningJob = D1 ('MetaData "CreateHyperParameterTuningJob" "Amazonka.SageMaker.CreateHyperParameterTuningJob" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "CreateHyperParameterTuningJob'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "trainingJobDefinition") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe HyperParameterTrainingJobDefinition)) :*: (S1 ('MetaSel ('Just "warmStartConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe HyperParameterTuningJobWarmStartConfig)) :*: S1 ('MetaSel ('Just "tags") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Tag])))) :*: (S1 ('MetaSel ('Just "trainingJobDefinitions") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty HyperParameterTrainingJobDefinition))) :*: (S1 ('MetaSel ('Just "hyperParameterTuningJobName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "hyperParameterTuningJobConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 HyperParameterTuningJobConfig)))))
type AWSResponse CreateHyperParameterTuningJob Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

newCreateHyperParameterTuningJob Source #

Create a value of CreateHyperParameterTuningJob with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:trainingJobDefinition:CreateHyperParameterTuningJob', createHyperParameterTuningJob_trainingJobDefinition - The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

$sel:warmStartConfig:CreateHyperParameterTuningJob', createHyperParameterTuningJob_warmStartConfig - Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

$sel:tags:CreateHyperParameterTuningJob', createHyperParameterTuningJob_tags - An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

$sel:trainingJobDefinitions:CreateHyperParameterTuningJob', createHyperParameterTuningJob_trainingJobDefinitions - A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

$sel:hyperParameterTuningJobName:CreateHyperParameterTuningJob', createHyperParameterTuningJob_hyperParameterTuningJobName - The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

$sel:hyperParameterTuningJobConfig:CreateHyperParameterTuningJob', createHyperParameterTuningJob_hyperParameterTuningJobConfig - The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.

Request Lenses

createHyperParameterTuningJob_trainingJobDefinition :: Lens' CreateHyperParameterTuningJob (Maybe HyperParameterTrainingJobDefinition) Source #

The HyperParameterTrainingJobDefinition object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.

createHyperParameterTuningJob_warmStartConfig :: Lens' CreateHyperParameterTuningJob (Maybe HyperParameterTuningJobWarmStartConfig) Source #

Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.

All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.

All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.

createHyperParameterTuningJob_tags :: Lens' CreateHyperParameterTuningJob (Maybe [Tag]) Source #

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.

Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.

createHyperParameterTuningJob_trainingJobDefinitions :: Lens' CreateHyperParameterTuningJob (Maybe (NonEmpty HyperParameterTrainingJobDefinition)) Source #

A list of the HyperParameterTrainingJobDefinition objects launched for this tuning job.

createHyperParameterTuningJob_hyperParameterTuningJobName :: Lens' CreateHyperParameterTuningJob Text Source #

The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same Amazon Web Services account and Amazon Web Services Region. The name must have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.

createHyperParameterTuningJob_hyperParameterTuningJobConfig :: Lens' CreateHyperParameterTuningJob HyperParameterTuningJobConfig Source #

The HyperParameterTuningJobConfig object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see How Hyperparameter Tuning Works.

Destructuring the Response

data CreateHyperParameterTuningJobResponse Source #

Constructors

CreateHyperParameterTuningJobResponse' 

Fields

  • httpStatus :: Int

    The response's http status code.

  • hyperParameterTuningJobArn :: Text

    The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.

Instances

Instances details
Eq CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Read CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Show CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

Generic CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

NFData CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

type Rep CreateHyperParameterTuningJobResponse Source # 
Instance details

Defined in Amazonka.SageMaker.CreateHyperParameterTuningJob

type Rep CreateHyperParameterTuningJobResponse = D1 ('MetaData "CreateHyperParameterTuningJobResponse" "Amazonka.SageMaker.CreateHyperParameterTuningJob" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "CreateHyperParameterTuningJobResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int) :*: S1 ('MetaSel ('Just "hyperParameterTuningJobArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newCreateHyperParameterTuningJobResponse Source #

Create a value of CreateHyperParameterTuningJobResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:httpStatus:CreateHyperParameterTuningJobResponse', createHyperParameterTuningJobResponse_httpStatus - The response's http status code.

$sel:hyperParameterTuningJobArn:CreateHyperParameterTuningJobResponse', createHyperParameterTuningJobResponse_hyperParameterTuningJobArn - The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.

Response Lenses

createHyperParameterTuningJobResponse_hyperParameterTuningJobArn :: Lens' CreateHyperParameterTuningJobResponse Text Source #

The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.