libZSservicesZSamazonka-forecastZSamazonka-forecast
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Forecast.Types

Description

 
Synopsis

Service Configuration

defaultService :: Service Source #

API version 2018-06-26 of the Amazon Forecast Service SDK configuration.

Errors

_ResourceAlreadyExistsException :: AsError a => Getting (First ServiceError) a ServiceError Source #

There is already a resource with this name. Try again with a different name.

_InvalidNextTokenException :: AsError a => Getting (First ServiceError) a ServiceError Source #

The token is not valid. Tokens expire after 24 hours.

_InvalidInputException :: AsError a => Getting (First ServiceError) a ServiceError Source #

We can't process the request because it includes an invalid value or a value that exceeds the valid range.

_ResourceNotFoundException :: AsError a => Getting (First ServiceError) a ServiceError Source #

We can't find a resource with that Amazon Resource Name (ARN). Check the ARN and try again.

_LimitExceededException :: AsError a => Getting (First ServiceError) a ServiceError Source #

The limit on the number of resources per account has been exceeded.

_ResourceInUseException :: AsError a => Getting (First ServiceError) a ServiceError Source #

The specified resource is in use.

AttributeType

newtype AttributeType Source #

Constructors

AttributeType' 

Instances

Instances details
Eq AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Ord AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Read AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Show AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Generic AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Associated Types

type Rep AttributeType :: Type -> Type #

NFData AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Methods

rnf :: AttributeType -> () #

Hashable AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToJSON AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToJSONKey AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

FromJSON AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

FromJSONKey AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToLog AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToHeader AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToQuery AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

FromXML AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToXML AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Methods

toXML :: AttributeType -> XML #

ToByteString AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

FromText AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

ToText AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

Methods

toText :: AttributeType -> Text #

type Rep AttributeType Source # 
Instance details

Defined in Amazonka.Forecast.Types.AttributeType

type Rep AttributeType = D1 ('MetaData "AttributeType" "Amazonka.Forecast.Types.AttributeType" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "AttributeType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromAttributeType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

AutoMLOverrideStrategy

newtype AutoMLOverrideStrategy Source #

Instances

Instances details
Eq AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Ord AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Read AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Show AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Generic AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Associated Types

type Rep AutoMLOverrideStrategy :: Type -> Type #

NFData AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

Methods

rnf :: AutoMLOverrideStrategy -> () #

Hashable AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToJSON AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToJSONKey AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

FromJSON AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

FromJSONKey AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToLog AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToHeader AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToQuery AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

FromXML AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToXML AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToByteString AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

FromText AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

ToText AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

type Rep AutoMLOverrideStrategy Source # 
Instance details

Defined in Amazonka.Forecast.Types.AutoMLOverrideStrategy

type Rep AutoMLOverrideStrategy = D1 ('MetaData "AutoMLOverrideStrategy" "Amazonka.Forecast.Types.AutoMLOverrideStrategy" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "AutoMLOverrideStrategy'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromAutoMLOverrideStrategy") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

DatasetType

newtype DatasetType Source #

Constructors

DatasetType' 

Instances

Instances details
Eq DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Ord DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Read DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Show DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Generic DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Associated Types

type Rep DatasetType :: Type -> Type #

NFData DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Methods

rnf :: DatasetType -> () #

Hashable DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToJSON DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToJSONKey DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

FromJSON DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

FromJSONKey DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToLog DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToHeader DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToQuery DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

FromXML DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToXML DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Methods

toXML :: DatasetType -> XML #

ToByteString DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

FromText DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

ToText DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

Methods

toText :: DatasetType -> Text #

type Rep DatasetType Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetType

type Rep DatasetType = D1 ('MetaData "DatasetType" "Amazonka.Forecast.Types.DatasetType" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "DatasetType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromDatasetType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

Domain

newtype Domain Source #

Constructors

Domain' 

Fields

Bundled Patterns

pattern Domain_CUSTOM :: Domain 
pattern Domain_EC2_CAPACITY :: Domain 
pattern Domain_INVENTORY_PLANNING :: Domain 
pattern Domain_METRICS :: Domain 
pattern Domain_RETAIL :: Domain 
pattern Domain_WEB_TRAFFIC :: Domain 
pattern Domain_WORK_FORCE :: Domain 

Instances

Instances details
Eq Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

(==) :: Domain -> Domain -> Bool #

(/=) :: Domain -> Domain -> Bool #

Ord Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Read Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Show Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Generic Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Associated Types

type Rep Domain :: Type -> Type #

Methods

from :: Domain -> Rep Domain x #

to :: Rep Domain x -> Domain #

NFData Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

rnf :: Domain -> () #

Hashable Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

hashWithSalt :: Int -> Domain -> Int #

hash :: Domain -> Int #

ToJSON Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

ToJSONKey Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

FromJSON Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

FromJSONKey Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

ToLog Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

ToHeader Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

toHeader :: HeaderName -> Domain -> [Header] #

ToQuery Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

FromXML Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

ToXML Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

toXML :: Domain -> XML #

ToByteString Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

toBS :: Domain -> ByteString #

FromText Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

ToText Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

Methods

toText :: Domain -> Text #

type Rep Domain Source # 
Instance details

Defined in Amazonka.Forecast.Types.Domain

type Rep Domain = D1 ('MetaData "Domain" "Amazonka.Forecast.Types.Domain" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "Domain'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromDomain") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

EvaluationType

newtype EvaluationType Source #

Constructors

EvaluationType' 

Instances

Instances details
Eq EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Ord EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Read EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Show EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Generic EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Associated Types

type Rep EvaluationType :: Type -> Type #

NFData EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Methods

rnf :: EvaluationType -> () #

Hashable EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToJSON EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToJSONKey EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

FromJSON EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

FromJSONKey EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToLog EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToHeader EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToQuery EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

FromXML EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToXML EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

Methods

toXML :: EvaluationType -> XML #

ToByteString EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

FromText EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

ToText EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

type Rep EvaluationType Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationType

type Rep EvaluationType = D1 ('MetaData "EvaluationType" "Amazonka.Forecast.Types.EvaluationType" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "EvaluationType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromEvaluationType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

FeaturizationMethodName

newtype FeaturizationMethodName Source #

Instances

Instances details
Eq FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Ord FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Read FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Show FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Generic FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Associated Types

type Rep FeaturizationMethodName :: Type -> Type #

NFData FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

Methods

rnf :: FeaturizationMethodName -> () #

Hashable FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToJSON FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToJSONKey FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

FromJSON FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

FromJSONKey FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToLog FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToHeader FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToQuery FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

FromXML FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToXML FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToByteString FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

FromText FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

ToText FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

type Rep FeaturizationMethodName Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethodName

type Rep FeaturizationMethodName = D1 ('MetaData "FeaturizationMethodName" "Amazonka.Forecast.Types.FeaturizationMethodName" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "FeaturizationMethodName'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromFeaturizationMethodName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

FilterConditionString

newtype FilterConditionString Source #

Instances

Instances details
Eq FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Ord FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Read FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Show FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Generic FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Associated Types

type Rep FilterConditionString :: Type -> Type #

NFData FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

Methods

rnf :: FilterConditionString -> () #

Hashable FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToJSON FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToJSONKey FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

FromJSON FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

FromJSONKey FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToLog FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToHeader FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToQuery FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

FromXML FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToXML FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToByteString FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

FromText FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

ToText FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

type Rep FilterConditionString Source # 
Instance details

Defined in Amazonka.Forecast.Types.FilterConditionString

type Rep FilterConditionString = D1 ('MetaData "FilterConditionString" "Amazonka.Forecast.Types.FilterConditionString" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "FilterConditionString'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromFilterConditionString") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

OptimizationMetric

newtype OptimizationMetric Source #

Instances

Instances details
Eq OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Ord OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Read OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Show OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Generic OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Associated Types

type Rep OptimizationMetric :: Type -> Type #

NFData OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

Methods

rnf :: OptimizationMetric -> () #

Hashable OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToJSON OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToJSONKey OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

FromJSON OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

FromJSONKey OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToLog OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToHeader OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToQuery OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

FromXML OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToXML OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToByteString OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

FromText OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

ToText OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

type Rep OptimizationMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.OptimizationMetric

type Rep OptimizationMetric = D1 ('MetaData "OptimizationMetric" "Amazonka.Forecast.Types.OptimizationMetric" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "OptimizationMetric'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromOptimizationMetric") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

ScalingType

newtype ScalingType Source #

Constructors

ScalingType' 

Instances

Instances details
Eq ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Ord ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Read ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Show ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Generic ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Associated Types

type Rep ScalingType :: Type -> Type #

NFData ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Methods

rnf :: ScalingType -> () #

Hashable ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToJSON ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToJSONKey ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

FromJSON ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

FromJSONKey ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToLog ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToHeader ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToQuery ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

FromXML ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToXML ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Methods

toXML :: ScalingType -> XML #

ToByteString ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

FromText ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

ToText ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

Methods

toText :: ScalingType -> Text #

type Rep ScalingType Source # 
Instance details

Defined in Amazonka.Forecast.Types.ScalingType

type Rep ScalingType = D1 ('MetaData "ScalingType" "Amazonka.Forecast.Types.ScalingType" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'True) (C1 ('MetaCons "ScalingType'" 'PrefixI 'True) (S1 ('MetaSel ('Just "fromScalingType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Text)))

CategoricalParameterRange

data CategoricalParameterRange Source #

Specifies a categorical hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

See: newCategoricalParameterRange smart constructor.

Constructors

CategoricalParameterRange' 

Fields

  • name :: Text

    The name of the categorical hyperparameter to tune.

  • values :: NonEmpty Text

    A list of the tunable categories for the hyperparameter.

Instances

Instances details
Eq CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

Read CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

Show CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

Generic CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

Associated Types

type Rep CategoricalParameterRange :: Type -> Type #

NFData CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

Hashable CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

ToJSON CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

FromJSON CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

type Rep CategoricalParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.CategoricalParameterRange

type Rep CategoricalParameterRange = D1 ('MetaData "CategoricalParameterRange" "Amazonka.Forecast.Types.CategoricalParameterRange" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "CategoricalParameterRange'" 'PrefixI 'True) (S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "values") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (NonEmpty Text))))

newCategoricalParameterRange Source #

Create a value of CategoricalParameterRange with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:name:CategoricalParameterRange', categoricalParameterRange_name - The name of the categorical hyperparameter to tune.

$sel:values:CategoricalParameterRange', categoricalParameterRange_values - A list of the tunable categories for the hyperparameter.

categoricalParameterRange_name :: Lens' CategoricalParameterRange Text Source #

The name of the categorical hyperparameter to tune.

categoricalParameterRange_values :: Lens' CategoricalParameterRange (NonEmpty Text) Source #

A list of the tunable categories for the hyperparameter.

ContinuousParameterRange

data ContinuousParameterRange Source #

Specifies a continuous hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

See: newContinuousParameterRange smart constructor.

Constructors

ContinuousParameterRange' 

Fields

  • scalingType :: Maybe ScalingType

    The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

    Auto
    Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
    Linear
    Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
    Logarithmic
    Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

    Logarithmic scaling works only for ranges that have values greater than 0.

    ReverseLogarithmic
    hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

    Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

    For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

  • name :: Text

    The name of the hyperparameter to tune.

  • maxValue :: Double

    The maximum tunable value of the hyperparameter.

  • minValue :: Double

    The minimum tunable value of the hyperparameter.

Instances

Instances details
Eq ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

Read ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

Show ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

Generic ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

Associated Types

type Rep ContinuousParameterRange :: Type -> Type #

NFData ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

Hashable ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

ToJSON ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

FromJSON ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

type Rep ContinuousParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.ContinuousParameterRange

type Rep ContinuousParameterRange = D1 ('MetaData "ContinuousParameterRange" "Amazonka.Forecast.Types.ContinuousParameterRange" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "ContinuousParameterRange'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "scalingType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe ScalingType)) :*: S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "maxValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Double) :*: S1 ('MetaSel ('Just "minValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Double))))

newContinuousParameterRange Source #

Create a value of ContinuousParameterRange with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:scalingType:ContinuousParameterRange', continuousParameterRange_scalingType - The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

Auto
Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
Linear
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have values greater than 0.

ReverseLogarithmic
hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

$sel:name:ContinuousParameterRange', continuousParameterRange_name - The name of the hyperparameter to tune.

$sel:maxValue:ContinuousParameterRange', continuousParameterRange_maxValue - The maximum tunable value of the hyperparameter.

$sel:minValue:ContinuousParameterRange', continuousParameterRange_minValue - The minimum tunable value of the hyperparameter.

continuousParameterRange_scalingType :: Lens' ContinuousParameterRange (Maybe ScalingType) Source #

The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

Auto
Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
Linear
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have values greater than 0.

ReverseLogarithmic
hyperparameter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

continuousParameterRange_name :: Lens' ContinuousParameterRange Text Source #

The name of the hyperparameter to tune.

continuousParameterRange_maxValue :: Lens' ContinuousParameterRange Double Source #

The maximum tunable value of the hyperparameter.

continuousParameterRange_minValue :: Lens' ContinuousParameterRange Double Source #

The minimum tunable value of the hyperparameter.

DataDestination

data DataDestination Source #

The destination for an export job. Provide an S3 path, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the location, and an AWS Key Management Service (KMS) key (optional).

See: newDataDestination smart constructor.

Constructors

DataDestination' 

Fields

  • s3Config :: S3Config

    The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

Instances

Instances details
Eq DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

Read DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

Show DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

Generic DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

Associated Types

type Rep DataDestination :: Type -> Type #

NFData DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

Methods

rnf :: DataDestination -> () #

Hashable DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

ToJSON DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

FromJSON DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

type Rep DataDestination Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataDestination

type Rep DataDestination = D1 ('MetaData "DataDestination" "Amazonka.Forecast.Types.DataDestination" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DataDestination'" 'PrefixI 'True) (S1 ('MetaSel ('Just "s3Config") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 S3Config)))

newDataDestination Source #

Create a value of DataDestination with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:s3Config:DataDestination', dataDestination_s3Config - The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

dataDestination_s3Config :: Lens' DataDestination S3Config Source #

The path to an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the bucket.

DataSource

data DataSource Source #

The source of your training data, an AWS Identity and Access Management (IAM) role that allows Amazon Forecast to access the data and, optionally, an AWS Key Management Service (KMS) key. This object is submitted in the CreateDatasetImportJob request.

See: newDataSource smart constructor.

Constructors

DataSource' 

Fields

  • s3Config :: S3Config

    The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

Instances

Instances details
Eq DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

Read DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

Show DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

Generic DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

Associated Types

type Rep DataSource :: Type -> Type #

NFData DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

Methods

rnf :: DataSource -> () #

Hashable DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

ToJSON DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

FromJSON DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

type Rep DataSource Source # 
Instance details

Defined in Amazonka.Forecast.Types.DataSource

type Rep DataSource = D1 ('MetaData "DataSource" "Amazonka.Forecast.Types.DataSource" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DataSource'" 'PrefixI 'True) (S1 ('MetaSel ('Just "s3Config") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 S3Config)))

newDataSource Source #

Create a value of DataSource with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:s3Config:DataSource', dataSource_s3Config - The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

dataSource_s3Config :: Lens' DataSource S3Config Source #

The path to the training data stored in an Amazon Simple Storage Service (Amazon S3) bucket along with the credentials to access the data.

DatasetGroupSummary

data DatasetGroupSummary Source #

Provides a summary of the dataset group properties used in the ListDatasetGroups operation. To get the complete set of properties, call the DescribeDatasetGroup operation, and provide the DatasetGroupArn.

See: newDatasetGroupSummary smart constructor.

Constructors

DatasetGroupSummary' 

Fields

Instances

Instances details
Eq DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

Read DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

Show DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

Generic DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

Associated Types

type Rep DatasetGroupSummary :: Type -> Type #

NFData DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

Methods

rnf :: DatasetGroupSummary -> () #

Hashable DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

FromJSON DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

type Rep DatasetGroupSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetGroupSummary

type Rep DatasetGroupSummary = D1 ('MetaData "DatasetGroupSummary" "Amazonka.Forecast.Types.DatasetGroupSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DatasetGroupSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "datasetGroupName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "datasetGroupArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)))))

newDatasetGroupSummary :: DatasetGroupSummary Source #

Create a value of DatasetGroupSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:DatasetGroupSummary', datasetGroupSummary_creationTime - When the dataset group was created.

$sel:datasetGroupName:DatasetGroupSummary', datasetGroupSummary_datasetGroupName - The name of the dataset group.

$sel:datasetGroupArn:DatasetGroupSummary', datasetGroupSummary_datasetGroupArn - The Amazon Resource Name (ARN) of the dataset group.

$sel:lastModificationTime:DatasetGroupSummary', datasetGroupSummary_lastModificationTime - When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the ListDatasetGroups call.

datasetGroupSummary_datasetGroupArn :: Lens' DatasetGroupSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the dataset group.

datasetGroupSummary_lastModificationTime :: Lens' DatasetGroupSummary (Maybe UTCTime) Source #

When the dataset group was created or last updated from a call to the UpdateDatasetGroup operation. While the dataset group is being updated, LastModificationTime is the current time of the ListDatasetGroups call.

DatasetImportJobSummary

data DatasetImportJobSummary Source #

Provides a summary of the dataset import job properties used in the ListDatasetImportJobs operation. To get the complete set of properties, call the DescribeDatasetImportJob operation, and provide the DatasetImportJobArn.

See: newDatasetImportJobSummary smart constructor.

Constructors

DatasetImportJobSummary' 

Fields

  • creationTime :: Maybe POSIX

    When the dataset import job was created.

  • status :: Maybe Text

    The status of the dataset import job. States include:

    • ACTIVE
    • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
    • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
    • CREATE_STOPPING, CREATE_STOPPED
  • datasetImportJobName :: Maybe Text

    The name of the dataset import job.

  • dataSource :: Maybe DataSource

    The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

    If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

  • datasetImportJobArn :: Maybe Text

    The Amazon Resource Name (ARN) of the dataset import job.

  • message :: Maybe Text

    If an error occurred, an informational message about the error.

  • lastModificationTime :: Maybe POSIX

    The last time the resource was modified. The timestamp depends on the status of the job:

    • CREATE_PENDING - The CreationTime.
    • CREATE_IN_PROGRESS - The current timestamp.
    • CREATE_STOPPING - The current timestamp.
    • CREATE_STOPPED - When the job stopped.
    • ACTIVE or CREATE_FAILED - When the job finished or failed.

Instances

Instances details
Eq DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

Read DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

Show DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

Generic DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

Associated Types

type Rep DatasetImportJobSummary :: Type -> Type #

NFData DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

Methods

rnf :: DatasetImportJobSummary -> () #

Hashable DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

FromJSON DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

type Rep DatasetImportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetImportJobSummary

type Rep DatasetImportJobSummary = D1 ('MetaData "DatasetImportJobSummary" "Amazonka.Forecast.Types.DatasetImportJobSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DatasetImportJobSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "datasetImportJobName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "dataSource") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe DataSource)) :*: S1 ('MetaSel ('Just "datasetImportJobArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newDatasetImportJobSummary :: DatasetImportJobSummary Source #

Create a value of DatasetImportJobSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:DatasetImportJobSummary', datasetImportJobSummary_creationTime - When the dataset import job was created.

$sel:status:DatasetImportJobSummary', datasetImportJobSummary_status - The status of the dataset import job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

$sel:datasetImportJobName:DatasetImportJobSummary', datasetImportJobSummary_datasetImportJobName - The name of the dataset import job.

$sel:dataSource:DatasetImportJobSummary', datasetImportJobSummary_dataSource - The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

$sel:datasetImportJobArn:DatasetImportJobSummary', datasetImportJobSummary_datasetImportJobArn - The Amazon Resource Name (ARN) of the dataset import job.

$sel:message:DatasetImportJobSummary', datasetImportJobSummary_message - If an error occurred, an informational message about the error.

$sel:lastModificationTime:DatasetImportJobSummary', datasetImportJobSummary_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

datasetImportJobSummary_status :: Lens' DatasetImportJobSummary (Maybe Text) Source #

The status of the dataset import job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

datasetImportJobSummary_dataSource :: Lens' DatasetImportJobSummary (Maybe DataSource) Source #

The location of the training data to import and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the data. The training data must be stored in an Amazon S3 bucket.

If encryption is used, DataSource includes an AWS Key Management Service (KMS) key.

datasetImportJobSummary_datasetImportJobArn :: Lens' DatasetImportJobSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the dataset import job.

datasetImportJobSummary_message :: Lens' DatasetImportJobSummary (Maybe Text) Source #

If an error occurred, an informational message about the error.

datasetImportJobSummary_lastModificationTime :: Lens' DatasetImportJobSummary (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

DatasetSummary

data DatasetSummary Source #

Provides a summary of the dataset properties used in the ListDatasets operation. To get the complete set of properties, call the DescribeDataset operation, and provide the DatasetArn.

See: newDatasetSummary smart constructor.

Constructors

DatasetSummary' 

Fields

Instances

Instances details
Eq DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

Read DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

Show DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

Generic DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

Associated Types

type Rep DatasetSummary :: Type -> Type #

NFData DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

Methods

rnf :: DatasetSummary -> () #

Hashable DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

FromJSON DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

type Rep DatasetSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.DatasetSummary

type Rep DatasetSummary = D1 ('MetaData "DatasetSummary" "Amazonka.Forecast.Types.DatasetSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DatasetSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "datasetArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "domain") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Domain)))) :*: (S1 ('MetaSel ('Just "datasetType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe DatasetType)) :*: (S1 ('MetaSel ('Just "datasetName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newDatasetSummary :: DatasetSummary Source #

Create a value of DatasetSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:DatasetSummary', datasetSummary_creationTime - When the dataset was created.

$sel:datasetArn:DatasetSummary', datasetSummary_datasetArn - The Amazon Resource Name (ARN) of the dataset.

$sel:domain:DatasetSummary', datasetSummary_domain - The domain associated with the dataset.

$sel:datasetType:DatasetSummary', datasetSummary_datasetType - The dataset type.

$sel:datasetName:DatasetSummary', datasetSummary_datasetName - The name of the dataset.

$sel:lastModificationTime:DatasetSummary', datasetSummary_lastModificationTime - When you create a dataset, LastModificationTime is the same as CreationTime. While data is being imported to the dataset, LastModificationTime is the current time of the ListDatasets call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.

datasetSummary_datasetArn :: Lens' DatasetSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the dataset.

datasetSummary_domain :: Lens' DatasetSummary (Maybe Domain) Source #

The domain associated with the dataset.

datasetSummary_lastModificationTime :: Lens' DatasetSummary (Maybe UTCTime) Source #

When you create a dataset, LastModificationTime is the same as CreationTime. While data is being imported to the dataset, LastModificationTime is the current time of the ListDatasets call. After a CreateDatasetImportJob operation has finished, LastModificationTime is when the import job completed or failed.

EncryptionConfig

data EncryptionConfig Source #

An AWS Key Management Service (KMS) key and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key. You can specify this optional object in the CreateDataset and CreatePredictor requests.

See: newEncryptionConfig smart constructor.

Constructors

EncryptionConfig' 

Fields

  • roleArn :: Text

    The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

    Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

  • kmsKeyArn :: Text

    The Amazon Resource Name (ARN) of the KMS key.

Instances

Instances details
Eq EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

Read EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

Show EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

Generic EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

Associated Types

type Rep EncryptionConfig :: Type -> Type #

NFData EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

Methods

rnf :: EncryptionConfig -> () #

Hashable EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

ToJSON EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

FromJSON EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

type Rep EncryptionConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.EncryptionConfig

type Rep EncryptionConfig = D1 ('MetaData "EncryptionConfig" "Amazonka.Forecast.Types.EncryptionConfig" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "EncryptionConfig'" 'PrefixI 'True) (S1 ('MetaSel ('Just "roleArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "kmsKeyArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newEncryptionConfig Source #

Create a value of EncryptionConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:roleArn:EncryptionConfig', encryptionConfig_roleArn - The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

$sel:kmsKeyArn:EncryptionConfig', encryptionConfig_kmsKeyArn - The Amazon Resource Name (ARN) of the KMS key.

encryptionConfig_roleArn :: Lens' EncryptionConfig Text Source #

The ARN of the IAM role that Amazon Forecast can assume to access the AWS KMS key.

Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

encryptionConfig_kmsKeyArn :: Lens' EncryptionConfig Text Source #

The Amazon Resource Name (ARN) of the KMS key.

ErrorMetric

data ErrorMetric Source #

Provides detailed error metrics to evaluate the performance of a predictor. This object is part of the Metrics object.

See: newErrorMetric smart constructor.

Constructors

ErrorMetric' 

Fields

Instances

Instances details
Eq ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

Read ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

Show ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

Generic ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

Associated Types

type Rep ErrorMetric :: Type -> Type #

NFData ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

Methods

rnf :: ErrorMetric -> () #

Hashable ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

FromJSON ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

type Rep ErrorMetric Source # 
Instance details

Defined in Amazonka.Forecast.Types.ErrorMetric

type Rep ErrorMetric = D1 ('MetaData "ErrorMetric" "Amazonka.Forecast.Types.ErrorMetric" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "ErrorMetric'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "mase") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "wape") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))) :*: (S1 ('MetaSel ('Just "mape") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: (S1 ('MetaSel ('Just "rmse") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "forecastType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))))

newErrorMetric :: ErrorMetric Source #

Create a value of ErrorMetric with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:mase:ErrorMetric', errorMetric_mase - The Mean Absolute Scaled Error (MASE)

$sel:wape:ErrorMetric', errorMetric_wape - The weighted absolute percentage error (WAPE).

$sel:mape:ErrorMetric', errorMetric_mape - The Mean Absolute Percentage Error (MAPE)

$sel:rmse:ErrorMetric', errorMetric_rmse - The root-mean-square error (RMSE).

$sel:forecastType:ErrorMetric', errorMetric_forecastType - The Forecast type used to compute WAPE, MAPE, MASE, and RMSE.

errorMetric_mase :: Lens' ErrorMetric (Maybe Double) Source #

The Mean Absolute Scaled Error (MASE)

errorMetric_wape :: Lens' ErrorMetric (Maybe Double) Source #

The weighted absolute percentage error (WAPE).

errorMetric_mape :: Lens' ErrorMetric (Maybe Double) Source #

The Mean Absolute Percentage Error (MAPE)

errorMetric_rmse :: Lens' ErrorMetric (Maybe Double) Source #

The root-mean-square error (RMSE).

errorMetric_forecastType :: Lens' ErrorMetric (Maybe Text) Source #

The Forecast type used to compute WAPE, MAPE, MASE, and RMSE.

EvaluationParameters

data EvaluationParameters Source #

Parameters that define how to split a dataset into training data and testing data, and the number of iterations to perform. These parameters are specified in the predefined algorithms but you can override them in the CreatePredictor request.

See: newEvaluationParameters smart constructor.

Constructors

EvaluationParameters' 

Fields

  • backTestWindowOffset :: Maybe Int

    The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

    ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

  • numberOfBacktestWindows :: Maybe Int

    The number of times to split the input data. The default is 1. Valid values are 1 through 5.

Instances

Instances details
Eq EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Read EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Show EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Generic EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Associated Types

type Rep EvaluationParameters :: Type -> Type #

NFData EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Methods

rnf :: EvaluationParameters -> () #

Hashable EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

ToJSON EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

FromJSON EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

type Rep EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

type Rep EvaluationParameters = D1 ('MetaData "EvaluationParameters" "Amazonka.Forecast.Types.EvaluationParameters" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "EvaluationParameters'" 'PrefixI 'True) (S1 ('MetaSel ('Just "backTestWindowOffset") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)) :*: S1 ('MetaSel ('Just "numberOfBacktestWindows") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int))))

newEvaluationParameters :: EvaluationParameters Source #

Create a value of EvaluationParameters with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:backTestWindowOffset:EvaluationParameters', evaluationParameters_backTestWindowOffset - The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

$sel:numberOfBacktestWindows:EvaluationParameters', evaluationParameters_numberOfBacktestWindows - The number of times to split the input data. The default is 1. Valid values are 1 through 5.

evaluationParameters_backTestWindowOffset :: Lens' EvaluationParameters (Maybe Int) Source #

The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

evaluationParameters_numberOfBacktestWindows :: Lens' EvaluationParameters (Maybe Int) Source #

The number of times to split the input data. The default is 1. Valid values are 1 through 5.

EvaluationResult

data EvaluationResult Source #

The results of evaluating an algorithm. Returned as part of the GetAccuracyMetrics response.

See: newEvaluationResult smart constructor.

Constructors

EvaluationResult' 

Fields

  • algorithmArn :: Maybe Text

    The Amazon Resource Name (ARN) of the algorithm that was evaluated.

  • testWindows :: Maybe [WindowSummary]

    The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.

Instances

Instances details
Eq EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

Read EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

Show EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

Generic EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

Associated Types

type Rep EvaluationResult :: Type -> Type #

NFData EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

Methods

rnf :: EvaluationResult -> () #

Hashable EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

FromJSON EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

type Rep EvaluationResult Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationResult

type Rep EvaluationResult = D1 ('MetaData "EvaluationResult" "Amazonka.Forecast.Types.EvaluationResult" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "EvaluationResult'" 'PrefixI 'True) (S1 ('MetaSel ('Just "algorithmArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "testWindows") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [WindowSummary]))))

newEvaluationResult :: EvaluationResult Source #

Create a value of EvaluationResult with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:algorithmArn:EvaluationResult', evaluationResult_algorithmArn - The Amazon Resource Name (ARN) of the algorithm that was evaluated.

$sel:testWindows:EvaluationResult', evaluationResult_testWindows - The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.

evaluationResult_algorithmArn :: Lens' EvaluationResult (Maybe Text) Source #

The Amazon Resource Name (ARN) of the algorithm that was evaluated.

evaluationResult_testWindows :: Lens' EvaluationResult (Maybe [WindowSummary]) Source #

The array of test windows used for evaluating the algorithm. The NumberOfBacktestWindows from the EvaluationParameters object determines the number of windows in the array.

Featurization

data Featurization Source #

Provides featurization (transformation) information for a dataset field. This object is part of the FeaturizationConfig object.

For example:

{
"AttributeName": "demand",
FeaturizationPipeline [ {
"FeaturizationMethodName": "filling",
"FeaturizationMethodParameters": {"aggregation": "avg", "backfill": "nan"}
} ]
}

See: newFeaturization smart constructor.

Constructors

Featurization' 

Fields

  • featurizationPipeline :: Maybe (NonEmpty FeaturizationMethod)

    An array of one FeaturizationMethod object that specifies the feature transformation method.

  • attributeName :: Text

    The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For example, for the RETAIL domain, the target is demand, and for the CUSTOM domain, the target is target_value. For more information, see howitworks-missing-values.

Instances

Instances details
Eq Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

Read Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

Show Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

Generic Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

Associated Types

type Rep Featurization :: Type -> Type #

NFData Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

Methods

rnf :: Featurization -> () #

Hashable Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

ToJSON Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

FromJSON Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

type Rep Featurization Source # 
Instance details

Defined in Amazonka.Forecast.Types.Featurization

type Rep Featurization = D1 ('MetaData "Featurization" "Amazonka.Forecast.Types.Featurization" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Featurization'" 'PrefixI 'True) (S1 ('MetaSel ('Just "featurizationPipeline") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty FeaturizationMethod))) :*: S1 ('MetaSel ('Just "attributeName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newFeaturization Source #

Create a value of Featurization with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:featurizationPipeline:Featurization', featurization_featurizationPipeline - An array of one FeaturizationMethod object that specifies the feature transformation method.

$sel:attributeName:Featurization', featurization_attributeName - The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For example, for the RETAIL domain, the target is demand, and for the CUSTOM domain, the target is target_value. For more information, see howitworks-missing-values.

featurization_featurizationPipeline :: Lens' Featurization (Maybe (NonEmpty FeaturizationMethod)) Source #

An array of one FeaturizationMethod object that specifies the feature transformation method.

featurization_attributeName :: Lens' Featurization Text Source #

The name of the schema attribute that specifies the data field to be featurized. Amazon Forecast supports the target field of the TARGET_TIME_SERIES and the RELATED_TIME_SERIES datasets. For example, for the RETAIL domain, the target is demand, and for the CUSTOM domain, the target is target_value. For more information, see howitworks-missing-values.

FeaturizationConfig

data FeaturizationConfig Source #

In a CreatePredictor operation, the specified algorithm trains a model using the specified dataset group. You can optionally tell the operation to modify data fields prior to training a model. These modifications are referred to as featurization.

You define featurization using the FeaturizationConfig object. You specify an array of transformations, one for each field that you want to featurize. You then include the FeaturizationConfig object in your CreatePredictor request. Amazon Forecast applies the featurization to the TARGET_TIME_SERIES and RELATED_TIME_SERIES datasets before model training.

You can create multiple featurization configurations. For example, you might call the CreatePredictor operation twice by specifying different featurization configurations.

See: newFeaturizationConfig smart constructor.

Constructors

FeaturizationConfig' 

Fields

  • featurizations :: Maybe (NonEmpty Featurization)

    An array of featurization (transformation) information for the fields of a dataset.

  • forecastDimensions :: Maybe (NonEmpty Text)

    An array of dimension (field) names that specify how to group the generated forecast.

    For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

    All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

  • forecastFrequency :: Text

    The frequency of predictions in a forecast.

    Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

    The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

    When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

Instances

Instances details
Eq FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

Read FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

Show FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

Generic FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

Associated Types

type Rep FeaturizationConfig :: Type -> Type #

NFData FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

Methods

rnf :: FeaturizationConfig -> () #

Hashable FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

ToJSON FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

FromJSON FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

type Rep FeaturizationConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationConfig

type Rep FeaturizationConfig = D1 ('MetaData "FeaturizationConfig" "Amazonka.Forecast.Types.FeaturizationConfig" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "FeaturizationConfig'" 'PrefixI 'True) (S1 ('MetaSel ('Just "featurizations") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty Featurization))) :*: (S1 ('MetaSel ('Just "forecastDimensions") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty Text))) :*: S1 ('MetaSel ('Just "forecastFrequency") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))

newFeaturizationConfig Source #

Create a value of FeaturizationConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:featurizations:FeaturizationConfig', featurizationConfig_featurizations - An array of featurization (transformation) information for the fields of a dataset.

$sel:forecastDimensions:FeaturizationConfig', featurizationConfig_forecastDimensions - An array of dimension (field) names that specify how to group the generated forecast.

For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

$sel:forecastFrequency:FeaturizationConfig', featurizationConfig_forecastFrequency - The frequency of predictions in a forecast.

Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

featurizationConfig_featurizations :: Lens' FeaturizationConfig (Maybe (NonEmpty Featurization)) Source #

An array of featurization (transformation) information for the fields of a dataset.

featurizationConfig_forecastDimensions :: Lens' FeaturizationConfig (Maybe (NonEmpty Text)) Source #

An array of dimension (field) names that specify how to group the generated forecast.

For example, suppose that you are generating a forecast for item sales across all of your stores, and your dataset contains a store_id field. If you want the sales forecast for each item by store, you would specify store_id as the dimension.

All forecast dimensions specified in the TARGET_TIME_SERIES dataset don't need to be specified in the CreatePredictor request. All forecast dimensions specified in the RELATED_TIME_SERIES dataset must be specified in the CreatePredictor request.

featurizationConfig_forecastFrequency :: Lens' FeaturizationConfig Text Source #

The frequency of predictions in a forecast.

Valid intervals are Y (Year), M (Month), W (Week), D (Day), H (Hour), 30min (30 minutes), 15min (15 minutes), 10min (10 minutes), 5min (5 minutes), and 1min (1 minute). For example, "Y" indicates every year and "5min" indicates every five minutes.

The frequency must be greater than or equal to the TARGET_TIME_SERIES dataset frequency.

When a RELATED_TIME_SERIES dataset is provided, the frequency must be equal to the RELATED_TIME_SERIES dataset frequency.

FeaturizationMethod

data FeaturizationMethod Source #

Provides information about the method that featurizes (transforms) a dataset field. The method is part of the FeaturizationPipeline of the Featurization object.

The following is an example of how you specify a FeaturizationMethod object.

{
"FeaturizationMethodName": "filling",
"FeaturizationMethodParameters": {"aggregation": "sum", "middlefill": "zero", "backfill": "zero"}
}

See: newFeaturizationMethod smart constructor.

Constructors

FeaturizationMethod' 

Fields

  • featurizationMethodParameters :: Maybe (HashMap Text Text)

    The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

    The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Bold signifies the default value.

    • aggregation: sum, avg, first, min, max
    • frontfill: none
    • middlefill: zero, nan (not a number), value, median, mean, min, max
    • backfill: zero, nan, value, median, mean, min, max

    The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

    • middlefill: zero, value, median, mean, min, max
    • backfill: zero, value, median, mean, min, max
    • futurefill: zero, value, median, mean, min, max

    To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2".

  • featurizationMethodName :: FeaturizationMethodName

    The name of the method. The "filling" method is the only supported method.

Instances

Instances details
Eq FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

Read FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

Show FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

Generic FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

Associated Types

type Rep FeaturizationMethod :: Type -> Type #

NFData FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

Methods

rnf :: FeaturizationMethod -> () #

Hashable FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

ToJSON FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

FromJSON FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

type Rep FeaturizationMethod Source # 
Instance details

Defined in Amazonka.Forecast.Types.FeaturizationMethod

type Rep FeaturizationMethod = D1 ('MetaData "FeaturizationMethod" "Amazonka.Forecast.Types.FeaturizationMethod" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "FeaturizationMethod'" 'PrefixI 'True) (S1 ('MetaSel ('Just "featurizationMethodParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text))) :*: S1 ('MetaSel ('Just "featurizationMethodName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 FeaturizationMethodName)))

newFeaturizationMethod Source #

Create a value of FeaturizationMethod with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:featurizationMethodParameters:FeaturizationMethod', featurizationMethod_featurizationMethodParameters - The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Bold signifies the default value.

  • aggregation: sum, avg, first, min, max
  • frontfill: none
  • middlefill: zero, nan (not a number), value, median, mean, min, max
  • backfill: zero, nan, value, median, mean, min, max

The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

  • middlefill: zero, value, median, mean, min, max
  • backfill: zero, value, median, mean, min, max
  • futurefill: zero, value, median, mean, min, max

To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2".

$sel:featurizationMethodName:FeaturizationMethod', featurizationMethod_featurizationMethodName - The name of the method. The "filling" method is the only supported method.

featurizationMethod_featurizationMethodParameters :: Lens' FeaturizationMethod (Maybe (HashMap Text Text)) Source #

The method parameters (key-value pairs), which are a map of override parameters. Specify these parameters to override the default values. Related Time Series attributes do not accept aggregation parameters.

The following list shows the parameters and their valid values for the "filling" featurization method for a Target Time Series dataset. Bold signifies the default value.

  • aggregation: sum, avg, first, min, max
  • frontfill: none
  • middlefill: zero, nan (not a number), value, median, mean, min, max
  • backfill: zero, nan, value, median, mean, min, max

The following list shows the parameters and their valid values for a Related Time Series featurization method (there are no defaults):

  • middlefill: zero, value, median, mean, min, max
  • backfill: zero, value, median, mean, min, max
  • futurefill: zero, value, median, mean, min, max

To set a filling method to a specific value, set the fill parameter to value and define the value in a corresponding _value parameter. For example, to set backfilling to a value of 2, include the following: "backfill": "value" and "backfill_value":"2".

featurizationMethod_featurizationMethodName :: Lens' FeaturizationMethod FeaturizationMethodName Source #

The name of the method. The "filling" method is the only supported method.

Filter

data Filter Source #

Describes a filter for choosing a subset of objects. Each filter consists of a condition and a match statement. The condition is either IS or IS_NOT, which specifies whether to include or exclude the objects that match the statement, respectively. The match statement consists of a key and a value.

See: newFilter smart constructor.

Constructors

Filter' 

Fields

  • key :: Text

    The name of the parameter to filter on.

  • value :: Text

    The value to match.

  • condition :: FilterConditionString

    The condition to apply. To include the objects that match the statement, specify IS. To exclude matching objects, specify IS_NOT.

Instances

Instances details
Eq Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Methods

(==) :: Filter -> Filter -> Bool #

(/=) :: Filter -> Filter -> Bool #

Read Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Show Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Generic Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Associated Types

type Rep Filter :: Type -> Type #

Methods

from :: Filter -> Rep Filter x #

to :: Rep Filter x -> Filter #

NFData Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Methods

rnf :: Filter -> () #

Hashable Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

Methods

hashWithSalt :: Int -> Filter -> Int #

hash :: Filter -> Int #

ToJSON Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

type Rep Filter Source # 
Instance details

Defined in Amazonka.Forecast.Types.Filter

type Rep Filter = D1 ('MetaData "Filter" "Amazonka.Forecast.Types.Filter" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Filter'" 'PrefixI 'True) (S1 ('MetaSel ('Just "key") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: (S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "condition") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 FilterConditionString))))

newFilter Source #

Create a value of Filter with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:key:Filter', filter_key - The name of the parameter to filter on.

$sel:value:Filter', filter_value - The value to match.

$sel:condition:Filter', filter_condition - The condition to apply. To include the objects that match the statement, specify IS. To exclude matching objects, specify IS_NOT.

filter_key :: Lens' Filter Text Source #

The name of the parameter to filter on.

filter_value :: Lens' Filter Text Source #

The value to match.

filter_condition :: Lens' Filter FilterConditionString Source #

The condition to apply. To include the objects that match the statement, specify IS. To exclude matching objects, specify IS_NOT.

ForecastExportJobSummary

data ForecastExportJobSummary Source #

Provides a summary of the forecast export job properties used in the ListForecastExportJobs operation. To get the complete set of properties, call the DescribeForecastExportJob operation, and provide the listed ForecastExportJobArn.

See: newForecastExportJobSummary smart constructor.

Constructors

ForecastExportJobSummary' 

Fields

  • creationTime :: Maybe POSIX

    When the forecast export job was created.

  • status :: Maybe Text

    The status of the forecast export job. States include:

    • ACTIVE
    • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
    • CREATE_STOPPING, CREATE_STOPPED
    • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

    The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

  • destination :: Maybe DataDestination

    The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

  • forecastExportJobArn :: Maybe Text

    The Amazon Resource Name (ARN) of the forecast export job.

  • forecastExportJobName :: Maybe Text

    The name of the forecast export job.

  • message :: Maybe Text

    If an error occurred, an informational message about the error.

  • lastModificationTime :: Maybe POSIX

    The last time the resource was modified. The timestamp depends on the status of the job:

    • CREATE_PENDING - The CreationTime.
    • CREATE_IN_PROGRESS - The current timestamp.
    • CREATE_STOPPING - The current timestamp.
    • CREATE_STOPPED - When the job stopped.
    • ACTIVE or CREATE_FAILED - When the job finished or failed.

Instances

Instances details
Eq ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

Read ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

Show ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

Generic ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

Associated Types

type Rep ForecastExportJobSummary :: Type -> Type #

NFData ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

Hashable ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

FromJSON ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

type Rep ForecastExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastExportJobSummary

type Rep ForecastExportJobSummary = D1 ('MetaData "ForecastExportJobSummary" "Amazonka.Forecast.Types.ForecastExportJobSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "ForecastExportJobSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "destination") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe DataDestination)))) :*: ((S1 ('MetaSel ('Just "forecastExportJobArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "forecastExportJobName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newForecastExportJobSummary :: ForecastExportJobSummary Source #

Create a value of ForecastExportJobSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:ForecastExportJobSummary', forecastExportJobSummary_creationTime - When the forecast export job was created.

$sel:status:ForecastExportJobSummary', forecastExportJobSummary_status - The status of the forecast export job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

$sel:destination:ForecastExportJobSummary', forecastExportJobSummary_destination - The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

$sel:forecastExportJobArn:ForecastExportJobSummary', forecastExportJobSummary_forecastExportJobArn - The Amazon Resource Name (ARN) of the forecast export job.

$sel:forecastExportJobName:ForecastExportJobSummary', forecastExportJobSummary_forecastExportJobName - The name of the forecast export job.

$sel:message:ForecastExportJobSummary', forecastExportJobSummary_message - If an error occurred, an informational message about the error.

$sel:lastModificationTime:ForecastExportJobSummary', forecastExportJobSummary_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

forecastExportJobSummary_status :: Lens' ForecastExportJobSummary (Maybe Text) Source #

The status of the forecast export job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

The Status of the forecast export job must be ACTIVE before you can access the forecast in your S3 bucket.

forecastExportJobSummary_destination :: Lens' ForecastExportJobSummary (Maybe DataDestination) Source #

The path to the Amazon Simple Storage Service (Amazon S3) bucket where the forecast is exported.

forecastExportJobSummary_forecastExportJobArn :: Lens' ForecastExportJobSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the forecast export job.

forecastExportJobSummary_message :: Lens' ForecastExportJobSummary (Maybe Text) Source #

If an error occurred, an informational message about the error.

forecastExportJobSummary_lastModificationTime :: Lens' ForecastExportJobSummary (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

ForecastSummary

data ForecastSummary Source #

Provides a summary of the forecast properties used in the ListForecasts operation. To get the complete set of properties, call the DescribeForecast operation, and provide the ForecastArn that is listed in the summary.

See: newForecastSummary smart constructor.

Constructors

ForecastSummary' 

Fields

  • creationTime :: Maybe POSIX

    When the forecast creation task was created.

  • status :: Maybe Text

    The status of the forecast. States include:

    • ACTIVE
    • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
    • CREATE_STOPPING, CREATE_STOPPED
    • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

    The Status of the forecast must be ACTIVE before you can query or export the forecast.

  • predictorArn :: Maybe Text

    The ARN of the predictor used to generate the forecast.

  • forecastArn :: Maybe Text

    The ARN of the forecast.

  • forecastName :: Maybe Text

    The name of the forecast.

  • datasetGroupArn :: Maybe Text

    The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

  • message :: Maybe Text

    If an error occurred, an informational message about the error.

  • lastModificationTime :: Maybe POSIX

    The last time the resource was modified. The timestamp depends on the status of the job:

    • CREATE_PENDING - The CreationTime.
    • CREATE_IN_PROGRESS - The current timestamp.
    • CREATE_STOPPING - The current timestamp.
    • CREATE_STOPPED - When the job stopped.
    • ACTIVE or CREATE_FAILED - When the job finished or failed.

Instances

Instances details
Eq ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

Read ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

Show ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

Generic ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

Associated Types

type Rep ForecastSummary :: Type -> Type #

NFData ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

Methods

rnf :: ForecastSummary -> () #

Hashable ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

FromJSON ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

type Rep ForecastSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.ForecastSummary

type Rep ForecastSummary = D1 ('MetaData "ForecastSummary" "Amazonka.Forecast.Types.ForecastSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "ForecastSummary'" 'PrefixI 'True) (((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "predictorArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "forecastArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "forecastName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "datasetGroupArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newForecastSummary :: ForecastSummary Source #

Create a value of ForecastSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:ForecastSummary', forecastSummary_creationTime - When the forecast creation task was created.

$sel:status:ForecastSummary', forecastSummary_status - The status of the forecast. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

The Status of the forecast must be ACTIVE before you can query or export the forecast.

$sel:predictorArn:ForecastSummary', forecastSummary_predictorArn - The ARN of the predictor used to generate the forecast.

$sel:forecastArn:ForecastSummary', forecastSummary_forecastArn - The ARN of the forecast.

$sel:forecastName:ForecastSummary', forecastSummary_forecastName - The name of the forecast.

$sel:datasetGroupArn:ForecastSummary', forecastSummary_datasetGroupArn - The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

$sel:message:ForecastSummary', forecastSummary_message - If an error occurred, an informational message about the error.

$sel:lastModificationTime:ForecastSummary', forecastSummary_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

forecastSummary_creationTime :: Lens' ForecastSummary (Maybe UTCTime) Source #

When the forecast creation task was created.

forecastSummary_status :: Lens' ForecastSummary (Maybe Text) Source #

The status of the forecast. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

The Status of the forecast must be ACTIVE before you can query or export the forecast.

forecastSummary_predictorArn :: Lens' ForecastSummary (Maybe Text) Source #

The ARN of the predictor used to generate the forecast.

forecastSummary_datasetGroupArn :: Lens' ForecastSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the dataset group that provided the data used to train the predictor.

forecastSummary_message :: Lens' ForecastSummary (Maybe Text) Source #

If an error occurred, an informational message about the error.

forecastSummary_lastModificationTime :: Lens' ForecastSummary (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

HyperParameterTuningJobConfig

data HyperParameterTuningJobConfig Source #

Configuration information for a hyperparameter tuning job. You specify this object in the CreatePredictor request.

A hyperparameter is a parameter that governs the model training process. You set hyperparameters before training starts, unlike model parameters, which are determined during training. The values of the hyperparameters effect which values are chosen for the model parameters.

In a hyperparameter tuning job, Amazon Forecast chooses the set of hyperparameter values that optimize a specified metric. Forecast accomplishes this by running many training jobs over a range of hyperparameter values. The optimum set of values depends on the algorithm, the training data, and the specified metric objective.

See: newHyperParameterTuningJobConfig smart constructor.

Constructors

HyperParameterTuningJobConfig' 

Fields

Instances

Instances details
Eq HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

Read HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

Show HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

Generic HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

Associated Types

type Rep HyperParameterTuningJobConfig :: Type -> Type #

NFData HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

Hashable HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

ToJSON HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

FromJSON HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

type Rep HyperParameterTuningJobConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.HyperParameterTuningJobConfig

type Rep HyperParameterTuningJobConfig = D1 ('MetaData "HyperParameterTuningJobConfig" "Amazonka.Forecast.Types.HyperParameterTuningJobConfig" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "HyperParameterTuningJobConfig'" 'PrefixI 'True) (S1 ('MetaSel ('Just "parameterRanges") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe ParameterRanges))))

newHyperParameterTuningJobConfig :: HyperParameterTuningJobConfig Source #

Create a value of HyperParameterTuningJobConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:parameterRanges:HyperParameterTuningJobConfig', hyperParameterTuningJobConfig_parameterRanges - Specifies the ranges of valid values for the hyperparameters.

hyperParameterTuningJobConfig_parameterRanges :: Lens' HyperParameterTuningJobConfig (Maybe ParameterRanges) Source #

Specifies the ranges of valid values for the hyperparameters.

InputDataConfig

data InputDataConfig Source #

The data used to train a predictor. The data includes a dataset group and any supplementary features. You specify this object in the CreatePredictor request.

See: newInputDataConfig smart constructor.

Constructors

InputDataConfig' 

Fields

Instances

Instances details
Eq InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

Read InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

Show InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

Generic InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

Associated Types

type Rep InputDataConfig :: Type -> Type #

NFData InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

Methods

rnf :: InputDataConfig -> () #

Hashable InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

ToJSON InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

FromJSON InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

type Rep InputDataConfig Source # 
Instance details

Defined in Amazonka.Forecast.Types.InputDataConfig

type Rep InputDataConfig = D1 ('MetaData "InputDataConfig" "Amazonka.Forecast.Types.InputDataConfig" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "InputDataConfig'" 'PrefixI 'True) (S1 ('MetaSel ('Just "supplementaryFeatures") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty SupplementaryFeature))) :*: S1 ('MetaSel ('Just "datasetGroupArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newInputDataConfig Source #

Create a value of InputDataConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:supplementaryFeatures:InputDataConfig', inputDataConfig_supplementaryFeatures - An array of supplementary features. The only supported feature is a holiday calendar.

$sel:datasetGroupArn:InputDataConfig', inputDataConfig_datasetGroupArn - The Amazon Resource Name (ARN) of the dataset group.

inputDataConfig_supplementaryFeatures :: Lens' InputDataConfig (Maybe (NonEmpty SupplementaryFeature)) Source #

An array of supplementary features. The only supported feature is a holiday calendar.

inputDataConfig_datasetGroupArn :: Lens' InputDataConfig Text Source #

The Amazon Resource Name (ARN) of the dataset group.

IntegerParameterRange

data IntegerParameterRange Source #

Specifies an integer hyperparameter and it's range of tunable values. This object is part of the ParameterRanges object.

See: newIntegerParameterRange smart constructor.

Constructors

IntegerParameterRange' 

Fields

  • scalingType :: Maybe ScalingType

    The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

    Auto
    Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
    Linear
    Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
    Logarithmic
    Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

    Logarithmic scaling works only for ranges that have values greater than 0.

    ReverseLogarithmic
    Not supported for IntegerParameterRange.

    Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

    For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

  • name :: Text

    The name of the hyperparameter to tune.

  • maxValue :: Int

    The maximum tunable value of the hyperparameter.

  • minValue :: Int

    The minimum tunable value of the hyperparameter.

Instances

Instances details
Eq IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

Read IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

Show IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

Generic IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

Associated Types

type Rep IntegerParameterRange :: Type -> Type #

NFData IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

Methods

rnf :: IntegerParameterRange -> () #

Hashable IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

ToJSON IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

FromJSON IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

type Rep IntegerParameterRange Source # 
Instance details

Defined in Amazonka.Forecast.Types.IntegerParameterRange

type Rep IntegerParameterRange = D1 ('MetaData "IntegerParameterRange" "Amazonka.Forecast.Types.IntegerParameterRange" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "IntegerParameterRange'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "scalingType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe ScalingType)) :*: S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "maxValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int) :*: S1 ('MetaSel ('Just "minValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newIntegerParameterRange Source #

Create a value of IntegerParameterRange with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:scalingType:IntegerParameterRange', integerParameterRange_scalingType - The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

Auto
Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
Linear
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have values greater than 0.

ReverseLogarithmic
Not supported for IntegerParameterRange.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

$sel:name:IntegerParameterRange', integerParameterRange_name - The name of the hyperparameter to tune.

$sel:maxValue:IntegerParameterRange', integerParameterRange_maxValue - The maximum tunable value of the hyperparameter.

$sel:minValue:IntegerParameterRange', integerParameterRange_minValue - The minimum tunable value of the hyperparameter.

integerParameterRange_scalingType :: Lens' IntegerParameterRange (Maybe ScalingType) Source #

The scale that hyperparameter tuning uses to search the hyperparameter range. Valid values:

Auto
Amazon Forecast hyperparameter tuning chooses the best scale for the hyperparameter.
Linear
Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.
Logarithmic
Hyperparameter tuning searches the values in the hyperparameter range by using a logarithmic scale.

Logarithmic scaling works only for ranges that have values greater than 0.

ReverseLogarithmic
Not supported for IntegerParameterRange.

Reverse logarithmic scaling works only for ranges that are entirely within the range 0 <= x < 1.0.

For information about choosing a hyperparameter scale, see Hyperparameter Scaling. One of the following values:

integerParameterRange_name :: Lens' IntegerParameterRange Text Source #

The name of the hyperparameter to tune.

integerParameterRange_maxValue :: Lens' IntegerParameterRange Int Source #

The maximum tunable value of the hyperparameter.

integerParameterRange_minValue :: Lens' IntegerParameterRange Int Source #

The minimum tunable value of the hyperparameter.

Metrics

data Metrics Source #

Provides metrics that are used to evaluate the performance of a predictor. This object is part of the WindowSummary object.

See: newMetrics smart constructor.

Constructors

Metrics' 

Fields

Instances

Instances details
Eq Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Methods

(==) :: Metrics -> Metrics -> Bool #

(/=) :: Metrics -> Metrics -> Bool #

Read Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Show Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Generic Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Associated Types

type Rep Metrics :: Type -> Type #

Methods

from :: Metrics -> Rep Metrics x #

to :: Rep Metrics x -> Metrics #

NFData Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Methods

rnf :: Metrics -> () #

Hashable Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

Methods

hashWithSalt :: Int -> Metrics -> Int #

hash :: Metrics -> Int #

FromJSON Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

type Rep Metrics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Metrics

type Rep Metrics = D1 ('MetaData "Metrics" "Amazonka.Forecast.Types.Metrics" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Metrics'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "errorMetrics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [ErrorMetric])) :*: S1 ('MetaSel ('Just "rmse") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))) :*: (S1 ('MetaSel ('Just "weightedQuantileLosses") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [WeightedQuantileLoss])) :*: S1 ('MetaSel ('Just "averageWeightedQuantileLoss") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)))))

newMetrics :: Metrics Source #

Create a value of Metrics with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:errorMetrics:Metrics', metrics_errorMetrics - Provides detailed error metrics for each forecast type. Metrics include root-mean square-error (RMSE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and weighted average percentage error (WAPE).

$sel:rmse:Metrics', metrics_rmse - The root-mean-square error (RMSE).

$sel:weightedQuantileLosses:Metrics', metrics_weightedQuantileLosses - An array of weighted quantile losses. Quantiles divide a probability distribution into regions of equal probability. The distribution in this case is the loss function.

$sel:averageWeightedQuantileLoss:Metrics', metrics_averageWeightedQuantileLoss - The average value of all weighted quantile losses.

metrics_errorMetrics :: Lens' Metrics (Maybe [ErrorMetric]) Source #

Provides detailed error metrics for each forecast type. Metrics include root-mean square-error (RMSE), mean absolute percentage error (MAPE), mean absolute scaled error (MASE), and weighted average percentage error (WAPE).

metrics_rmse :: Lens' Metrics (Maybe Double) Source #

The root-mean-square error (RMSE).

metrics_weightedQuantileLosses :: Lens' Metrics (Maybe [WeightedQuantileLoss]) Source #

An array of weighted quantile losses. Quantiles divide a probability distribution into regions of equal probability. The distribution in this case is the loss function.

metrics_averageWeightedQuantileLoss :: Lens' Metrics (Maybe Double) Source #

The average value of all weighted quantile losses.

ParameterRanges

data ParameterRanges Source #

Specifies the categorical, continuous, and integer hyperparameters, and their ranges of tunable values. The range of tunable values determines which values that a hyperparameter tuning job can choose for the specified hyperparameter. This object is part of the HyperParameterTuningJobConfig object.

See: newParameterRanges smart constructor.

Constructors

ParameterRanges' 

Fields

Instances

Instances details
Eq ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

Read ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

Show ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

Generic ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

Associated Types

type Rep ParameterRanges :: Type -> Type #

NFData ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

Methods

rnf :: ParameterRanges -> () #

Hashable ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

ToJSON ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

FromJSON ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

type Rep ParameterRanges Source # 
Instance details

Defined in Amazonka.Forecast.Types.ParameterRanges

type Rep ParameterRanges = D1 ('MetaData "ParameterRanges" "Amazonka.Forecast.Types.ParameterRanges" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "ParameterRanges'" 'PrefixI 'True) (S1 ('MetaSel ('Just "categoricalParameterRanges") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty CategoricalParameterRange))) :*: (S1 ('MetaSel ('Just "integerParameterRanges") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty IntegerParameterRange))) :*: S1 ('MetaSel ('Just "continuousParameterRanges") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty ContinuousParameterRange))))))

newParameterRanges :: ParameterRanges Source #

Create a value of ParameterRanges with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:categoricalParameterRanges:ParameterRanges', parameterRanges_categoricalParameterRanges - Specifies the tunable range for each categorical hyperparameter.

$sel:integerParameterRanges:ParameterRanges', parameterRanges_integerParameterRanges - Specifies the tunable range for each integer hyperparameter.

$sel:continuousParameterRanges:ParameterRanges', parameterRanges_continuousParameterRanges - Specifies the tunable range for each continuous hyperparameter.

parameterRanges_categoricalParameterRanges :: Lens' ParameterRanges (Maybe (NonEmpty CategoricalParameterRange)) Source #

Specifies the tunable range for each categorical hyperparameter.

parameterRanges_integerParameterRanges :: Lens' ParameterRanges (Maybe (NonEmpty IntegerParameterRange)) Source #

Specifies the tunable range for each integer hyperparameter.

parameterRanges_continuousParameterRanges :: Lens' ParameterRanges (Maybe (NonEmpty ContinuousParameterRange)) Source #

Specifies the tunable range for each continuous hyperparameter.

PredictorBacktestExportJobSummary

data PredictorBacktestExportJobSummary Source #

Provides a summary of the predictor backtest export job properties used in the ListPredictorBacktestExportJobs operation. To get a complete set of properties, call the DescribePredictorBacktestExportJob operation, and provide the listed PredictorBacktestExportJobArn.

See: newPredictorBacktestExportJobSummary smart constructor.

Constructors

PredictorBacktestExportJobSummary' 

Fields

  • creationTime :: Maybe POSIX

    When the predictor backtest export job was created.

  • status :: Maybe Text

    The status of the predictor backtest export job. States include:

    • ACTIVE
    • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
    • CREATE_STOPPING, CREATE_STOPPED
    • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • destination :: Maybe DataDestination
     
  • predictorBacktestExportJobArn :: Maybe Text

    The Amazon Resource Name (ARN) of the predictor backtest export job.

  • message :: Maybe Text

    Information about any errors that may have occurred during the backtest export.

  • predictorBacktestExportJobName :: Maybe Text

    The name of the predictor backtest export job.

  • lastModificationTime :: Maybe POSIX

    The last time the resource was modified. The timestamp depends on the status of the job:

    • CREATE_PENDING - The CreationTime.
    • CREATE_IN_PROGRESS - The current timestamp.
    • CREATE_STOPPING - The current timestamp.
    • CREATE_STOPPED - When the job stopped.
    • ACTIVE or CREATE_FAILED - When the job finished or failed.

Instances

Instances details
Eq PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

Read PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

Show PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

Generic PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

Associated Types

type Rep PredictorBacktestExportJobSummary :: Type -> Type #

NFData PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

Hashable PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

FromJSON PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

type Rep PredictorBacktestExportJobSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorBacktestExportJobSummary

type Rep PredictorBacktestExportJobSummary = D1 ('MetaData "PredictorBacktestExportJobSummary" "Amazonka.Forecast.Types.PredictorBacktestExportJobSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "PredictorBacktestExportJobSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "destination") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe DataDestination)))) :*: ((S1 ('MetaSel ('Just "predictorBacktestExportJobArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "predictorBacktestExportJobName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newPredictorBacktestExportJobSummary :: PredictorBacktestExportJobSummary Source #

Create a value of PredictorBacktestExportJobSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_creationTime - When the predictor backtest export job was created.

$sel:status:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_status - The status of the predictor backtest export job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

$sel:destination:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_destination - Undocumented member.

$sel:predictorBacktestExportJobArn:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_predictorBacktestExportJobArn - The Amazon Resource Name (ARN) of the predictor backtest export job.

$sel:message:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_message - Information about any errors that may have occurred during the backtest export.

$sel:predictorBacktestExportJobName:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_predictorBacktestExportJobName - The name of the predictor backtest export job.

$sel:lastModificationTime:PredictorBacktestExportJobSummary', predictorBacktestExportJobSummary_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

predictorBacktestExportJobSummary_status :: Lens' PredictorBacktestExportJobSummary (Maybe Text) Source #

The status of the predictor backtest export job. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED

predictorBacktestExportJobSummary_predictorBacktestExportJobArn :: Lens' PredictorBacktestExportJobSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the predictor backtest export job.

predictorBacktestExportJobSummary_message :: Lens' PredictorBacktestExportJobSummary (Maybe Text) Source #

Information about any errors that may have occurred during the backtest export.

predictorBacktestExportJobSummary_lastModificationTime :: Lens' PredictorBacktestExportJobSummary (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

PredictorExecution

data PredictorExecution Source #

The algorithm used to perform a backtest and the status of those tests.

See: newPredictorExecution smart constructor.

Constructors

PredictorExecution' 

Fields

Instances

Instances details
Eq PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

Read PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

Show PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

Generic PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

Associated Types

type Rep PredictorExecution :: Type -> Type #

NFData PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

Methods

rnf :: PredictorExecution -> () #

Hashable PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

FromJSON PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

type Rep PredictorExecution Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecution

type Rep PredictorExecution = D1 ('MetaData "PredictorExecution" "Amazonka.Forecast.Types.PredictorExecution" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "PredictorExecution'" 'PrefixI 'True) (S1 ('MetaSel ('Just "algorithmArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "testWindows") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [TestWindowSummary]))))

newPredictorExecution :: PredictorExecution Source #

Create a value of PredictorExecution with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:algorithmArn:PredictorExecution', predictorExecution_algorithmArn - The ARN of the algorithm used to test the predictor.

$sel:testWindows:PredictorExecution', predictorExecution_testWindows - An array of test windows used to evaluate the algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

predictorExecution_algorithmArn :: Lens' PredictorExecution (Maybe Text) Source #

The ARN of the algorithm used to test the predictor.

predictorExecution_testWindows :: Lens' PredictorExecution (Maybe [TestWindowSummary]) Source #

An array of test windows used to evaluate the algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

PredictorExecutionDetails

data PredictorExecutionDetails Source #

Contains details on the backtests performed to evaluate the accuracy of the predictor. The tests are returned in descending order of accuracy, with the most accurate backtest appearing first. You specify the number of backtests to perform when you call the operation.

See: newPredictorExecutionDetails smart constructor.

Constructors

PredictorExecutionDetails' 

Fields

  • predictorExecutions :: Maybe (NonEmpty PredictorExecution)

    An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

Instances

Instances details
Eq PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

Read PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

Show PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

Generic PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

Associated Types

type Rep PredictorExecutionDetails :: Type -> Type #

NFData PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

Hashable PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

FromJSON PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

type Rep PredictorExecutionDetails Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorExecutionDetails

type Rep PredictorExecutionDetails = D1 ('MetaData "PredictorExecutionDetails" "Amazonka.Forecast.Types.PredictorExecutionDetails" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "PredictorExecutionDetails'" 'PrefixI 'True) (S1 ('MetaSel ('Just "predictorExecutions") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty PredictorExecution)))))

newPredictorExecutionDetails :: PredictorExecutionDetails Source #

Create a value of PredictorExecutionDetails with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:predictorExecutions:PredictorExecutionDetails', predictorExecutionDetails_predictorExecutions - An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

predictorExecutionDetails_predictorExecutions :: Lens' PredictorExecutionDetails (Maybe (NonEmpty PredictorExecution)) Source #

An array of the backtests performed to evaluate the accuracy of the predictor against a particular algorithm. The NumberOfBacktestWindows from the object determines the number of windows in the array.

PredictorSummary

data PredictorSummary Source #

Provides a summary of the predictor properties that are used in the ListPredictors operation. To get the complete set of properties, call the DescribePredictor operation, and provide the listed PredictorArn.

See: newPredictorSummary smart constructor.

Constructors

PredictorSummary' 

Fields

  • creationTime :: Maybe POSIX

    When the model training task was created.

  • status :: Maybe Text

    The status of the predictor. States include:

    • ACTIVE
    • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
    • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
    • CREATE_STOPPING, CREATE_STOPPED

    The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

  • predictorArn :: Maybe Text

    The ARN of the predictor.

  • predictorName :: Maybe Text

    The name of the predictor.

  • datasetGroupArn :: Maybe Text

    The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

  • message :: Maybe Text

    If an error occurred, an informational message about the error.

  • lastModificationTime :: Maybe POSIX

    The last time the resource was modified. The timestamp depends on the status of the job:

    • CREATE_PENDING - The CreationTime.
    • CREATE_IN_PROGRESS - The current timestamp.
    • CREATE_STOPPING - The current timestamp.
    • CREATE_STOPPED - When the job stopped.
    • ACTIVE or CREATE_FAILED - When the job finished or failed.

Instances

Instances details
Eq PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

Read PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

Show PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

Generic PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

Associated Types

type Rep PredictorSummary :: Type -> Type #

NFData PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

Methods

rnf :: PredictorSummary -> () #

Hashable PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

FromJSON PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

type Rep PredictorSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.PredictorSummary

type Rep PredictorSummary = D1 ('MetaData "PredictorSummary" "Amazonka.Forecast.Types.PredictorSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "PredictorSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "predictorArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: ((S1 ('MetaSel ('Just "predictorName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "datasetGroupArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))))))

newPredictorSummary :: PredictorSummary Source #

Create a value of PredictorSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:PredictorSummary', predictorSummary_creationTime - When the model training task was created.

$sel:status:PredictorSummary', predictorSummary_status - The status of the predictor. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

$sel:predictorArn:PredictorSummary', predictorSummary_predictorArn - The ARN of the predictor.

$sel:predictorName:PredictorSummary', predictorSummary_predictorName - The name of the predictor.

$sel:datasetGroupArn:PredictorSummary', predictorSummary_datasetGroupArn - The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

$sel:message:PredictorSummary', predictorSummary_message - If an error occurred, an informational message about the error.

$sel:lastModificationTime:PredictorSummary', predictorSummary_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

predictorSummary_creationTime :: Lens' PredictorSummary (Maybe UTCTime) Source #

When the model training task was created.

predictorSummary_status :: Lens' PredictorSummary (Maybe Text) Source #

The status of the predictor. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

predictorSummary_datasetGroupArn :: Lens' PredictorSummary (Maybe Text) Source #

The Amazon Resource Name (ARN) of the dataset group that contains the data used to train the predictor.

predictorSummary_message :: Lens' PredictorSummary (Maybe Text) Source #

If an error occurred, an informational message about the error.

predictorSummary_lastModificationTime :: Lens' PredictorSummary (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

S3Config

data S3Config Source #

The path to the file(s) in an Amazon Simple Storage Service (Amazon S3) bucket, and an AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the file(s). Optionally, includes an AWS Key Management Service (KMS) key. This object is part of the DataSource object that is submitted in the CreateDatasetImportJob request, and part of the DataDestination object.

See: newS3Config smart constructor.

Constructors

S3Config' 

Fields

  • kmsKeyArn :: Maybe Text

    The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

  • path :: Text

    The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

  • roleArn :: Text

    The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

    Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

Instances

Instances details
Eq S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Read S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Show S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Generic S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Associated Types

type Rep S3Config :: Type -> Type #

Methods

from :: S3Config -> Rep S3Config x #

to :: Rep S3Config x -> S3Config #

NFData S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Methods

rnf :: S3Config -> () #

Hashable S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

Methods

hashWithSalt :: Int -> S3Config -> Int #

hash :: S3Config -> Int #

ToJSON S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

FromJSON S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

type Rep S3Config Source # 
Instance details

Defined in Amazonka.Forecast.Types.S3Config

type Rep S3Config = D1 ('MetaData "S3Config" "Amazonka.Forecast.Types.S3Config" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "S3Config'" 'PrefixI 'True) (S1 ('MetaSel ('Just "kmsKeyArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "path") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "roleArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text))))

newS3Config Source #

Create a value of S3Config with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:kmsKeyArn:S3Config', s3Config_kmsKeyArn - The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

$sel:path:S3Config', s3Config_path - The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

$sel:roleArn:S3Config', s3Config_roleArn - The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

s3Config_kmsKeyArn :: Lens' S3Config (Maybe Text) Source #

The Amazon Resource Name (ARN) of an AWS Key Management Service (KMS) key.

s3Config_path :: Lens' S3Config Text Source #

The path to an Amazon Simple Storage Service (Amazon S3) bucket or file(s) in an Amazon S3 bucket.

s3Config_roleArn :: Lens' S3Config Text Source #

The ARN of the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the Amazon S3 bucket or files. If you provide a value for the KMSKeyArn key, the role must allow access to the key.

Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an InvalidInputException error.

Schema

data Schema Source #

Defines the fields of a dataset. You specify this object in the CreateDataset request.

See: newSchema smart constructor.

Constructors

Schema' 

Fields

Instances

Instances details
Eq Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Methods

(==) :: Schema -> Schema -> Bool #

(/=) :: Schema -> Schema -> Bool #

Read Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Show Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Generic Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Associated Types

type Rep Schema :: Type -> Type #

Methods

from :: Schema -> Rep Schema x #

to :: Rep Schema x -> Schema #

NFData Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Methods

rnf :: Schema -> () #

Hashable Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

Methods

hashWithSalt :: Int -> Schema -> Int #

hash :: Schema -> Int #

ToJSON Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

FromJSON Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

type Rep Schema Source # 
Instance details

Defined in Amazonka.Forecast.Types.Schema

type Rep Schema = D1 ('MetaData "Schema" "Amazonka.Forecast.Types.Schema" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Schema'" 'PrefixI 'True) (S1 ('MetaSel ('Just "attributes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty SchemaAttribute)))))

newSchema :: Schema Source #

Create a value of Schema with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:attributes:Schema', schema_attributes - An array of attributes specifying the name and type of each field in a dataset.

schema_attributes :: Lens' Schema (Maybe (NonEmpty SchemaAttribute)) Source #

An array of attributes specifying the name and type of each field in a dataset.

SchemaAttribute

data SchemaAttribute Source #

An attribute of a schema, which defines a dataset field. A schema attribute is required for every field in a dataset. The Schema object contains an array of SchemaAttribute objects.

See: newSchemaAttribute smart constructor.

Constructors

SchemaAttribute' 

Fields

Instances

Instances details
Eq SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

Read SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

Show SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

Generic SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

Associated Types

type Rep SchemaAttribute :: Type -> Type #

NFData SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

Methods

rnf :: SchemaAttribute -> () #

Hashable SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

ToJSON SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

FromJSON SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

type Rep SchemaAttribute Source # 
Instance details

Defined in Amazonka.Forecast.Types.SchemaAttribute

type Rep SchemaAttribute = D1 ('MetaData "SchemaAttribute" "Amazonka.Forecast.Types.SchemaAttribute" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "SchemaAttribute'" 'PrefixI 'True) (S1 ('MetaSel ('Just "attributeType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe AttributeType)) :*: S1 ('MetaSel ('Just "attributeName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))))

newSchemaAttribute :: SchemaAttribute Source #

Create a value of SchemaAttribute with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:attributeType:SchemaAttribute', schemaAttribute_attributeType - The data type of the field.

$sel:attributeName:SchemaAttribute', schemaAttribute_attributeName - The name of the dataset field.

Statistics

data Statistics Source #

Provides statistics for each data field imported into to an Amazon Forecast dataset with the CreateDatasetImportJob operation.

See: newStatistics smart constructor.

Constructors

Statistics' 

Fields

  • max :: Maybe Text

    For a numeric field, the maximum value in the field.

  • countNullLong :: Maybe Integer

    The number of null values in the field. CountNullLong is used instead of CountNull if the value is greater than 2,147,483,647.

  • countNan :: Maybe Int

    The number of NAN (not a number) values in the field. If the response value is -1, refer to CountNanLong.

  • countNanLong :: Maybe Integer

    The number of NAN (not a number) values in the field. CountNanLong is used instead of CountNan if the value is greater than 2,147,483,647.

  • avg :: Maybe Double

    For a numeric field, the average value in the field.

  • countNull :: Maybe Int

    The number of null values in the field. If the response value is -1, refer to CountNullLong.

  • count :: Maybe Int

    The number of values in the field. If the response value is -1, refer to CountLong.

  • countLong :: Maybe Integer

    The number of values in the field. CountLong is used instead of Count if the value is greater than 2,147,483,647.

  • stddev :: Maybe Double

    For a numeric field, the standard deviation.

  • min :: Maybe Text

    For a numeric field, the minimum value in the field.

  • countDistinctLong :: Maybe Integer

    The number of distinct values in the field. CountDistinctLong is used instead of CountDistinct if the value is greater than 2,147,483,647.

  • countDistinct :: Maybe Int

    The number of distinct values in the field. If the response value is -1, refer to CountDistinctLong.

Instances

Instances details
Eq Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

Read Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

Show Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

Generic Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

Associated Types

type Rep Statistics :: Type -> Type #

NFData Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

Methods

rnf :: Statistics -> () #

Hashable Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

FromJSON Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

type Rep Statistics Source # 
Instance details

Defined in Amazonka.Forecast.Types.Statistics

type Rep Statistics = D1 ('MetaData "Statistics" "Amazonka.Forecast.Types.Statistics" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Statistics'" 'PrefixI 'True) (((S1 ('MetaSel ('Just "max") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "countNullLong") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "countNan") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)))) :*: (S1 ('MetaSel ('Just "countNanLong") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: (S1 ('MetaSel ('Just "avg") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "countNull") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int))))) :*: ((S1 ('MetaSel ('Just "count") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)) :*: (S1 ('MetaSel ('Just "countLong") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "stddev") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)))) :*: (S1 ('MetaSel ('Just "min") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "countDistinctLong") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: S1 ('MetaSel ('Just "countDistinct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)))))))

newStatistics :: Statistics Source #

Create a value of Statistics with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:max:Statistics', statistics_max - For a numeric field, the maximum value in the field.

$sel:countNullLong:Statistics', statistics_countNullLong - The number of null values in the field. CountNullLong is used instead of CountNull if the value is greater than 2,147,483,647.

$sel:countNan:Statistics', statistics_countNan - The number of NAN (not a number) values in the field. If the response value is -1, refer to CountNanLong.

$sel:countNanLong:Statistics', statistics_countNanLong - The number of NAN (not a number) values in the field. CountNanLong is used instead of CountNan if the value is greater than 2,147,483,647.

$sel:avg:Statistics', statistics_avg - For a numeric field, the average value in the field.

$sel:countNull:Statistics', statistics_countNull - The number of null values in the field. If the response value is -1, refer to CountNullLong.

$sel:count:Statistics', statistics_count - The number of values in the field. If the response value is -1, refer to CountLong.

$sel:countLong:Statistics', statistics_countLong - The number of values in the field. CountLong is used instead of Count if the value is greater than 2,147,483,647.

$sel:stddev:Statistics', statistics_stddev - For a numeric field, the standard deviation.

$sel:min:Statistics', statistics_min - For a numeric field, the minimum value in the field.

$sel:countDistinctLong:Statistics', statistics_countDistinctLong - The number of distinct values in the field. CountDistinctLong is used instead of CountDistinct if the value is greater than 2,147,483,647.

$sel:countDistinct:Statistics', statistics_countDistinct - The number of distinct values in the field. If the response value is -1, refer to CountDistinctLong.

statistics_max :: Lens' Statistics (Maybe Text) Source #

For a numeric field, the maximum value in the field.

statistics_countNullLong :: Lens' Statistics (Maybe Integer) Source #

The number of null values in the field. CountNullLong is used instead of CountNull if the value is greater than 2,147,483,647.

statistics_countNan :: Lens' Statistics (Maybe Int) Source #

The number of NAN (not a number) values in the field. If the response value is -1, refer to CountNanLong.

statistics_countNanLong :: Lens' Statistics (Maybe Integer) Source #

The number of NAN (not a number) values in the field. CountNanLong is used instead of CountNan if the value is greater than 2,147,483,647.

statistics_avg :: Lens' Statistics (Maybe Double) Source #

For a numeric field, the average value in the field.

statistics_countNull :: Lens' Statistics (Maybe Int) Source #

The number of null values in the field. If the response value is -1, refer to CountNullLong.

statistics_count :: Lens' Statistics (Maybe Int) Source #

The number of values in the field. If the response value is -1, refer to CountLong.

statistics_countLong :: Lens' Statistics (Maybe Integer) Source #

The number of values in the field. CountLong is used instead of Count if the value is greater than 2,147,483,647.

statistics_stddev :: Lens' Statistics (Maybe Double) Source #

For a numeric field, the standard deviation.

statistics_min :: Lens' Statistics (Maybe Text) Source #

For a numeric field, the minimum value in the field.

statistics_countDistinctLong :: Lens' Statistics (Maybe Integer) Source #

The number of distinct values in the field. CountDistinctLong is used instead of CountDistinct if the value is greater than 2,147,483,647.

statistics_countDistinct :: Lens' Statistics (Maybe Int) Source #

The number of distinct values in the field. If the response value is -1, refer to CountDistinctLong.

SupplementaryFeature

data SupplementaryFeature Source #

Describes a supplementary feature of a dataset group. This object is part of the InputDataConfig object. Forecast supports the Weather Index and Holidays built-in featurizations.

Weather Index

The Amazon Forecast Weather Index is a built-in featurization that incorporates historical and projected weather information into your model. The Weather Index supplements your datasets with over two years of historical weather data and up to 14 days of projected weather data. For more information, see Amazon Forecast Weather Index.

Holidays

Holidays is a built-in featurization that incorporates a feature-engineered dataset of national holiday information into your model. It provides native support for the holiday calendars of 66 countries. To view the holiday calendars, refer to the Jollyday library. For more information, see Holidays Featurization.

See: newSupplementaryFeature smart constructor.

Constructors

SupplementaryFeature' 

Fields

  • name :: Text

    The name of the feature. Valid values: "holiday" and "weather".

  • value :: Text

    Weather Index

    To enable the Weather Index, set the value to "true"

    Holidays

    To enable Holidays, specify a country with one of the following two-letter country codes:

    • "AL" - ALBANIA
    • "AR" - ARGENTINA
    • "AT" - AUSTRIA
    • "AU" - AUSTRALIA
    • "BA" - BOSNIA HERZEGOVINA
    • "BE" - BELGIUM
    • "BG" - BULGARIA
    • "BO" - BOLIVIA
    • "BR" - BRAZIL
    • "BY" - BELARUS
    • "CA" - CANADA
    • "CL" - CHILE
    • "CO" - COLOMBIA
    • "CR" - COSTA RICA
    • "HR" - CROATIA
    • "CZ" - CZECH REPUBLIC
    • "DK" - DENMARK
    • "EC" - ECUADOR
    • "EE" - ESTONIA
    • "ET" - ETHIOPIA
    • "FI" - FINLAND
    • "FR" - FRANCE
    • "DE" - GERMANY
    • "GR" - GREECE
    • "HU" - HUNGARY
    • "IS" - ICELAND
    • "IN" - INDIA
    • "IE" - IRELAND
    • "IT" - ITALY
    • "JP" - JAPAN
    • "KZ" - KAZAKHSTAN
    • "KR" - KOREA
    • "LV" - LATVIA
    • "LI" - LIECHTENSTEIN
    • "LT" - LITHUANIA
    • "LU" - LUXEMBOURG
    • "MK" - MACEDONIA
    • "MT" - MALTA
    • "MX" - MEXICO
    • "MD" - MOLDOVA
    • "ME" - MONTENEGRO
    • "NL" - NETHERLANDS
    • "NZ" - NEW ZEALAND
    • "NI" - NICARAGUA
    • "NG" - NIGERIA
    • "NO" - NORWAY
    • "PA" - PANAMA
    • "PY" - PARAGUAY
    • "PE" - PERU
    • "PL" - POLAND
    • "PT" - PORTUGAL
    • "RO" - ROMANIA
    • "RU" - RUSSIA
    • "RS" - SERBIA
    • "SK" - SLOVAKIA
    • "SI" - SLOVENIA
    • "ZA" - SOUTH AFRICA
    • "ES" - SPAIN
    • "SE" - SWEDEN
    • "CH" - SWITZERLAND
    • "UA" - UKRAINE
    • "AE" - UNITED ARAB EMIRATES
    • "US" - UNITED STATES
    • "UK" - UNITED KINGDOM
    • "UY" - URUGUAY
    • "VE" - VENEZUELA

Instances

Instances details
Eq SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

Read SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

Show SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

Generic SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

Associated Types

type Rep SupplementaryFeature :: Type -> Type #

NFData SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

Methods

rnf :: SupplementaryFeature -> () #

Hashable SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

ToJSON SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

FromJSON SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

type Rep SupplementaryFeature Source # 
Instance details

Defined in Amazonka.Forecast.Types.SupplementaryFeature

type Rep SupplementaryFeature = D1 ('MetaData "SupplementaryFeature" "Amazonka.Forecast.Types.SupplementaryFeature" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "SupplementaryFeature'" 'PrefixI 'True) (S1 ('MetaSel ('Just "name") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))

newSupplementaryFeature Source #

Create a value of SupplementaryFeature with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:name:SupplementaryFeature', supplementaryFeature_name - The name of the feature. Valid values: "holiday" and "weather".

$sel:value:SupplementaryFeature', supplementaryFeature_value - Weather Index

To enable the Weather Index, set the value to "true"

Holidays

To enable Holidays, specify a country with one of the following two-letter country codes:

  • "AL" - ALBANIA
  • "AR" - ARGENTINA
  • "AT" - AUSTRIA
  • "AU" - AUSTRALIA
  • "BA" - BOSNIA HERZEGOVINA
  • "BE" - BELGIUM
  • "BG" - BULGARIA
  • "BO" - BOLIVIA
  • "BR" - BRAZIL
  • "BY" - BELARUS
  • "CA" - CANADA
  • "CL" - CHILE
  • "CO" - COLOMBIA
  • "CR" - COSTA RICA
  • "HR" - CROATIA
  • "CZ" - CZECH REPUBLIC
  • "DK" - DENMARK
  • "EC" - ECUADOR
  • "EE" - ESTONIA
  • "ET" - ETHIOPIA
  • "FI" - FINLAND
  • "FR" - FRANCE
  • "DE" - GERMANY
  • "GR" - GREECE
  • "HU" - HUNGARY
  • "IS" - ICELAND
  • "IN" - INDIA
  • "IE" - IRELAND
  • "IT" - ITALY
  • "JP" - JAPAN
  • "KZ" - KAZAKHSTAN
  • "KR" - KOREA
  • "LV" - LATVIA
  • "LI" - LIECHTENSTEIN
  • "LT" - LITHUANIA
  • "LU" - LUXEMBOURG
  • "MK" - MACEDONIA
  • "MT" - MALTA
  • "MX" - MEXICO
  • "MD" - MOLDOVA
  • "ME" - MONTENEGRO
  • "NL" - NETHERLANDS
  • "NZ" - NEW ZEALAND
  • "NI" - NICARAGUA
  • "NG" - NIGERIA
  • "NO" - NORWAY
  • "PA" - PANAMA
  • "PY" - PARAGUAY
  • "PE" - PERU
  • "PL" - POLAND
  • "PT" - PORTUGAL
  • "RO" - ROMANIA
  • "RU" - RUSSIA
  • "RS" - SERBIA
  • "SK" - SLOVAKIA
  • "SI" - SLOVENIA
  • "ZA" - SOUTH AFRICA
  • "ES" - SPAIN
  • "SE" - SWEDEN
  • "CH" - SWITZERLAND
  • "UA" - UKRAINE
  • "AE" - UNITED ARAB EMIRATES
  • "US" - UNITED STATES
  • "UK" - UNITED KINGDOM
  • "UY" - URUGUAY
  • "VE" - VENEZUELA

supplementaryFeature_name :: Lens' SupplementaryFeature Text Source #

The name of the feature. Valid values: "holiday" and "weather".

supplementaryFeature_value :: Lens' SupplementaryFeature Text Source #

Weather Index

To enable the Weather Index, set the value to "true"

Holidays

To enable Holidays, specify a country with one of the following two-letter country codes:

  • "AL" - ALBANIA
  • "AR" - ARGENTINA
  • "AT" - AUSTRIA
  • "AU" - AUSTRALIA
  • "BA" - BOSNIA HERZEGOVINA
  • "BE" - BELGIUM
  • "BG" - BULGARIA
  • "BO" - BOLIVIA
  • "BR" - BRAZIL
  • "BY" - BELARUS
  • "CA" - CANADA
  • "CL" - CHILE
  • "CO" - COLOMBIA
  • "CR" - COSTA RICA
  • "HR" - CROATIA
  • "CZ" - CZECH REPUBLIC
  • "DK" - DENMARK
  • "EC" - ECUADOR
  • "EE" - ESTONIA
  • "ET" - ETHIOPIA
  • "FI" - FINLAND
  • "FR" - FRANCE
  • "DE" - GERMANY
  • "GR" - GREECE
  • "HU" - HUNGARY
  • "IS" - ICELAND
  • "IN" - INDIA
  • "IE" - IRELAND
  • "IT" - ITALY
  • "JP" - JAPAN
  • "KZ" - KAZAKHSTAN
  • "KR" - KOREA
  • "LV" - LATVIA
  • "LI" - LIECHTENSTEIN
  • "LT" - LITHUANIA
  • "LU" - LUXEMBOURG
  • "MK" - MACEDONIA
  • "MT" - MALTA
  • "MX" - MEXICO
  • "MD" - MOLDOVA
  • "ME" - MONTENEGRO
  • "NL" - NETHERLANDS
  • "NZ" - NEW ZEALAND
  • "NI" - NICARAGUA
  • "NG" - NIGERIA
  • "NO" - NORWAY
  • "PA" - PANAMA
  • "PY" - PARAGUAY
  • "PE" - PERU
  • "PL" - POLAND
  • "PT" - PORTUGAL
  • "RO" - ROMANIA
  • "RU" - RUSSIA
  • "RS" - SERBIA
  • "SK" - SLOVAKIA
  • "SI" - SLOVENIA
  • "ZA" - SOUTH AFRICA
  • "ES" - SPAIN
  • "SE" - SWEDEN
  • "CH" - SWITZERLAND
  • "UA" - UKRAINE
  • "AE" - UNITED ARAB EMIRATES
  • "US" - UNITED STATES
  • "UK" - UNITED KINGDOM
  • "UY" - URUGUAY
  • "VE" - VENEZUELA

Tag

data Tag Source #

The optional metadata that you apply to a resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

The following basic restrictions apply to tags:

  • Maximum number of tags per resource - 50.
  • For each resource, each tag key must be unique, and each tag key can have only one value.
  • Maximum key length - 128 Unicode characters in UTF-8.
  • Maximum value length - 256 Unicode characters in UTF-8.
  • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
  • Tag keys and values are case sensitive.
  • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

See: newTag smart constructor.

Constructors

Tag' 

Fields

  • key :: Sensitive Text

    One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

  • value :: Sensitive Text

    The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

Instances

Instances details
Eq Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

Methods

(==) :: Tag -> Tag -> Bool #

(/=) :: Tag -> Tag -> Bool #

Show Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

Methods

showsPrec :: Int -> Tag -> ShowS #

show :: Tag -> String #

showList :: [Tag] -> ShowS #

Generic Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

Associated Types

type Rep Tag :: Type -> Type #

Methods

from :: Tag -> Rep Tag x #

to :: Rep Tag x -> Tag #

NFData Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

Methods

rnf :: Tag -> () #

Hashable Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

Methods

hashWithSalt :: Int -> Tag -> Int #

hash :: Tag -> Int #

ToJSON Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

FromJSON Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

type Rep Tag Source # 
Instance details

Defined in Amazonka.Forecast.Types.Tag

type Rep Tag = D1 ('MetaData "Tag" "Amazonka.Forecast.Types.Tag" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "Tag'" 'PrefixI 'True) (S1 ('MetaSel ('Just "key") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Sensitive Text)) :*: S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Sensitive Text))))

newTag Source #

Create a value of Tag with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:key:Tag', tag_key - One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

$sel:value:Tag', tag_value - The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

tag_key :: Lens' Tag Text Source #

One part of a key-value pair that makes up a tag. A key is a general label that acts like a category for more specific tag values.

tag_value :: Lens' Tag Text Source #

The optional part of a key-value pair that makes up a tag. A value acts as a descriptor within a tag category (key).

TestWindowSummary

data TestWindowSummary Source #

The status, start time, and end time of a backtest, as well as a failure reason if applicable.

See: newTestWindowSummary smart constructor.

Constructors

TestWindowSummary' 

Fields

Instances

Instances details
Eq TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

Read TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

Show TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

Generic TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

Associated Types

type Rep TestWindowSummary :: Type -> Type #

NFData TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

Methods

rnf :: TestWindowSummary -> () #

Hashable TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

FromJSON TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

type Rep TestWindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.TestWindowSummary

type Rep TestWindowSummary = D1 ('MetaData "TestWindowSummary" "Amazonka.Forecast.Types.TestWindowSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "TestWindowSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "testWindowEnd") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "testWindowStart") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))))

newTestWindowSummary :: TestWindowSummary Source #

Create a value of TestWindowSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:status:TestWindowSummary', testWindowSummary_status - The status of the test. Possible status values are:

  • ACTIVE
  • CREATE_IN_PROGRESS
  • CREATE_FAILED

$sel:testWindowEnd:TestWindowSummary', testWindowSummary_testWindowEnd - The time at which the test ended.

$sel:testWindowStart:TestWindowSummary', testWindowSummary_testWindowStart - The time at which the test began.

$sel:message:TestWindowSummary', testWindowSummary_message - If the test failed, the reason why it failed.

testWindowSummary_status :: Lens' TestWindowSummary (Maybe Text) Source #

The status of the test. Possible status values are:

  • ACTIVE
  • CREATE_IN_PROGRESS
  • CREATE_FAILED

testWindowSummary_message :: Lens' TestWindowSummary (Maybe Text) Source #

If the test failed, the reason why it failed.

WeightedQuantileLoss

data WeightedQuantileLoss Source #

The weighted loss value for a quantile. This object is part of the Metrics object.

See: newWeightedQuantileLoss smart constructor.

Constructors

WeightedQuantileLoss' 

Fields

  • quantile :: Maybe Double

    The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.

  • lossValue :: Maybe Double

    The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.

Instances

Instances details
Eq WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

Read WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

Show WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

Generic WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

Associated Types

type Rep WeightedQuantileLoss :: Type -> Type #

NFData WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

Methods

rnf :: WeightedQuantileLoss -> () #

Hashable WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

FromJSON WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

type Rep WeightedQuantileLoss Source # 
Instance details

Defined in Amazonka.Forecast.Types.WeightedQuantileLoss

type Rep WeightedQuantileLoss = D1 ('MetaData "WeightedQuantileLoss" "Amazonka.Forecast.Types.WeightedQuantileLoss" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "WeightedQuantileLoss'" 'PrefixI 'True) (S1 ('MetaSel ('Just "quantile") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "lossValue") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))))

newWeightedQuantileLoss :: WeightedQuantileLoss Source #

Create a value of WeightedQuantileLoss with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:quantile:WeightedQuantileLoss', weightedQuantileLoss_quantile - The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.

$sel:lossValue:WeightedQuantileLoss', weightedQuantileLoss_lossValue - The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.

weightedQuantileLoss_quantile :: Lens' WeightedQuantileLoss (Maybe Double) Source #

The quantile. Quantiles divide a probability distribution into regions of equal probability. For example, if the distribution was divided into 5 regions of equal probability, the quantiles would be 0.2, 0.4, 0.6, and 0.8.

weightedQuantileLoss_lossValue :: Lens' WeightedQuantileLoss (Maybe Double) Source #

The difference between the predicted value and the actual value over the quantile, weighted (normalized) by dividing by the sum over all quantiles.

WindowSummary

data WindowSummary Source #

The metrics for a time range within the evaluation portion of a dataset. This object is part of the EvaluationResult object.

The TestWindowStart and TestWindowEnd parameters are determined by the BackTestWindowOffset parameter of the EvaluationParameters object.

See: newWindowSummary smart constructor.

Constructors

WindowSummary' 

Fields

Instances

Instances details
Eq WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

Read WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

Show WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

Generic WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

Associated Types

type Rep WindowSummary :: Type -> Type #

NFData WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

Methods

rnf :: WindowSummary -> () #

Hashable WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

FromJSON WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

type Rep WindowSummary Source # 
Instance details

Defined in Amazonka.Forecast.Types.WindowSummary

type Rep WindowSummary = D1 ('MetaData "WindowSummary" "Amazonka.Forecast.Types.WindowSummary" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "WindowSummary'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "metrics") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Metrics)) :*: S1 ('MetaSel ('Just "testWindowEnd") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX))) :*: (S1 ('MetaSel ('Just "evaluationType") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EvaluationType)) :*: (S1 ('MetaSel ('Just "testWindowStart") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "itemCount") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int))))))

newWindowSummary :: WindowSummary Source #

Create a value of WindowSummary with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:metrics:WindowSummary', windowSummary_metrics - Provides metrics used to evaluate the performance of a predictor.

$sel:testWindowEnd:WindowSummary', windowSummary_testWindowEnd - The timestamp that defines the end of the window.

$sel:evaluationType:WindowSummary', windowSummary_evaluationType - The type of evaluation.

  • SUMMARY - The average metrics across all windows.
  • COMPUTED - The metrics for the specified window.

$sel:testWindowStart:WindowSummary', windowSummary_testWindowStart - The timestamp that defines the start of the window.

$sel:itemCount:WindowSummary', windowSummary_itemCount - The number of data points within the window.

windowSummary_metrics :: Lens' WindowSummary (Maybe Metrics) Source #

Provides metrics used to evaluate the performance of a predictor.

windowSummary_testWindowEnd :: Lens' WindowSummary (Maybe UTCTime) Source #

The timestamp that defines the end of the window.

windowSummary_evaluationType :: Lens' WindowSummary (Maybe EvaluationType) Source #

The type of evaluation.

  • SUMMARY - The average metrics across all windows.
  • COMPUTED - The metrics for the specified window.

windowSummary_testWindowStart :: Lens' WindowSummary (Maybe UTCTime) Source #

The timestamp that defines the start of the window.

windowSummary_itemCount :: Lens' WindowSummary (Maybe Int) Source #

The number of data points within the window.