libZSservicesZSamazonka-forecastZSamazonka-forecast
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Forecast.Types.EvaluationParameters

Description

 
Synopsis

Documentation

data EvaluationParameters Source #

Parameters that define how to split a dataset into training data and testing data, and the number of iterations to perform. These parameters are specified in the predefined algorithms but you can override them in the CreatePredictor request.

See: newEvaluationParameters smart constructor.

Constructors

EvaluationParameters' 

Fields

  • backTestWindowOffset :: Maybe Int

    The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

    ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

  • numberOfBacktestWindows :: Maybe Int

    The number of times to split the input data. The default is 1. Valid values are 1 through 5.

Instances

Instances details
Eq EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Read EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Show EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Generic EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Associated Types

type Rep EvaluationParameters :: Type -> Type #

NFData EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

Methods

rnf :: EvaluationParameters -> () #

Hashable EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

ToJSON EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

FromJSON EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

type Rep EvaluationParameters Source # 
Instance details

Defined in Amazonka.Forecast.Types.EvaluationParameters

type Rep EvaluationParameters = D1 ('MetaData "EvaluationParameters" "Amazonka.Forecast.Types.EvaluationParameters" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "EvaluationParameters'" 'PrefixI 'True) (S1 ('MetaSel ('Just "backTestWindowOffset") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)) :*: S1 ('MetaSel ('Just "numberOfBacktestWindows") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int))))

newEvaluationParameters :: EvaluationParameters Source #

Create a value of EvaluationParameters with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:backTestWindowOffset:EvaluationParameters', evaluationParameters_backTestWindowOffset - The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

$sel:numberOfBacktestWindows:EvaluationParameters', evaluationParameters_numberOfBacktestWindows - The number of times to split the input data. The default is 1. Valid values are 1 through 5.

evaluationParameters_backTestWindowOffset :: Lens' EvaluationParameters (Maybe Int) Source #

The point from the end of the dataset where you want to split the data for model training and testing (evaluation). Specify the value as the number of data points. The default is the value of the forecast horizon. BackTestWindowOffset can be used to mimic a past virtual forecast start date. This value must be greater than or equal to the forecast horizon and less than half of the TARGET_TIME_SERIES dataset length.

ForecastHorizon <= BackTestWindowOffset < 1/2 * TARGET_TIME_SERIES dataset length

evaluationParameters_numberOfBacktestWindows :: Lens' EvaluationParameters (Maybe Int) Source #

The number of times to split the input data. The default is 1. Valid values are 1 through 5.