libZSservicesZSamazonka-forecastZSamazonka-forecast
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Forecast.DescribePredictor

Description

Describes a predictor created using the CreatePredictor operation.

In addition to listing the properties provided in the CreatePredictor request, this operation lists the following properties:

  • DatasetImportJobArns - The dataset import jobs used to import training data.
  • AutoMLAlgorithmArns - If AutoML is performed, the algorithms that were evaluated.
  • CreationTime
  • LastModificationTime
  • Status
  • Message - If an error occurred, information about the error.
Synopsis

Creating a Request

data DescribePredictor Source #

See: newDescribePredictor smart constructor.

Constructors

DescribePredictor' 

Fields

  • predictorArn :: Text

    The Amazon Resource Name (ARN) of the predictor that you want information about.

Instances

Instances details
Eq DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Read DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Show DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Generic DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Associated Types

type Rep DescribePredictor :: Type -> Type #

NFData DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Methods

rnf :: DescribePredictor -> () #

Hashable DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

ToJSON DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

AWSRequest DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Associated Types

type AWSResponse DescribePredictor #

ToHeaders DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

ToPath DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

ToQuery DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

type Rep DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

type Rep DescribePredictor = D1 ('MetaData "DescribePredictor" "Amazonka.Forecast.DescribePredictor" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DescribePredictor'" 'PrefixI 'True) (S1 ('MetaSel ('Just "predictorArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse DescribePredictor Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

newDescribePredictor Source #

Create a value of DescribePredictor with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:predictorArn:DescribePredictor', describePredictor_predictorArn - The Amazon Resource Name (ARN) of the predictor that you want information about.

Request Lenses

describePredictor_predictorArn :: Lens' DescribePredictor Text Source #

The Amazon Resource Name (ARN) of the predictor that you want information about.

Destructuring the Response

data DescribePredictorResponse Source #

See: newDescribePredictorResponse smart constructor.

Constructors

DescribePredictorResponse' 

Fields

Instances

Instances details
Eq DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Read DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Show DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Generic DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

Associated Types

type Rep DescribePredictorResponse :: Type -> Type #

NFData DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

type Rep DescribePredictorResponse Source # 
Instance details

Defined in Amazonka.Forecast.DescribePredictor

type Rep DescribePredictorResponse = D1 ('MetaData "DescribePredictorResponse" "Amazonka.Forecast.DescribePredictor" "libZSservicesZSamazonka-forecastZSamazonka-forecast" 'False) (C1 ('MetaCons "DescribePredictorResponse'" 'PrefixI 'True) ((((S1 ('MetaSel ('Just "creationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: (S1 ('MetaSel ('Just "forecastHorizon") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Int)) :*: S1 ('MetaSel ('Just "status") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "performAutoML") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: (S1 ('MetaSel ('Just "autoMLAlgorithmArns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Text])) :*: S1 ('MetaSel ('Just "trainingParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text)))))) :*: ((S1 ('MetaSel ('Just "algorithmArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "hPOConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe HyperParameterTuningJobConfig)) :*: S1 ('MetaSel ('Just "predictorArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "optimizationMetric") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe OptimizationMetric)) :*: (S1 ('MetaSel ('Just "predictorExecutionDetails") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe PredictorExecutionDetails)) :*: S1 ('MetaSel ('Just "datasetImportJobArns") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Text])))))) :*: (((S1 ('MetaSel ('Just "estimatedTimeRemainingInMinutes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Integer)) :*: (S1 ('MetaSel ('Just "autoMLOverrideStrategy") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe AutoMLOverrideStrategy)) :*: S1 ('MetaSel ('Just "evaluationParameters") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EvaluationParameters)))) :*: (S1 ('MetaSel ('Just "inputDataConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe InputDataConfig)) :*: (S1 ('MetaSel ('Just "predictorName") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "featurizationConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe FeaturizationConfig))))) :*: ((S1 ('MetaSel ('Just "encryptionConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe EncryptionConfig)) :*: (S1 ('MetaSel ('Just "forecastTypes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (NonEmpty Text))) :*: S1 ('MetaSel ('Just "message") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "performHPO") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Bool)) :*: (S1 ('MetaSel ('Just "lastModificationTime") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe POSIX)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int)))))))

newDescribePredictorResponse Source #

Create a value of DescribePredictorResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:creationTime:DescribePredictorResponse', describePredictorResponse_creationTime - When the model training task was created.

$sel:forecastHorizon:DescribePredictorResponse', describePredictorResponse_forecastHorizon - The number of time-steps of the forecast. The forecast horizon is also called the prediction length.

$sel:status:DescribePredictorResponse', describePredictorResponse_status - The status of the predictor. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

$sel:performAutoML:DescribePredictorResponse', describePredictorResponse_performAutoML - Whether the predictor is set to perform AutoML.

$sel:autoMLAlgorithmArns:DescribePredictorResponse', describePredictorResponse_autoMLAlgorithmArns - When PerformAutoML is specified, the ARN of the chosen algorithm.

$sel:trainingParameters:DescribePredictorResponse', describePredictorResponse_trainingParameters - The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.

$sel:algorithmArn:DescribePredictorResponse', describePredictorResponse_algorithmArn - The Amazon Resource Name (ARN) of the algorithm used for model training.

$sel:hPOConfig:DescribePredictorResponse', describePredictorResponse_hPOConfig - The hyperparameter override values for the algorithm.

$sel:predictorArn:DescribePredictor', describePredictorResponse_predictorArn - The ARN of the predictor.

$sel:optimizationMetric:DescribePredictorResponse', describePredictorResponse_optimizationMetric - The accuracy metric used to optimize the predictor.

$sel:predictorExecutionDetails:DescribePredictorResponse', describePredictorResponse_predictorExecutionDetails - Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.

$sel:datasetImportJobArns:DescribePredictorResponse', describePredictorResponse_datasetImportJobArns - An array of the ARNs of the dataset import jobs used to import training data for the predictor.

$sel:estimatedTimeRemainingInMinutes:DescribePredictorResponse', describePredictorResponse_estimatedTimeRemainingInMinutes - The estimated time remaining in minutes for the predictor training job to complete.

$sel:autoMLOverrideStrategy:DescribePredictorResponse', describePredictorResponse_autoMLOverrideStrategy - The LatencyOptimized AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges.

The AutoML strategy used to train the predictor. Unless LatencyOptimized is specified, the AutoML strategy optimizes predictor accuracy.

This parameter is only valid for predictors trained using AutoML.

$sel:evaluationParameters:DescribePredictorResponse', describePredictorResponse_evaluationParameters - Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

$sel:inputDataConfig:DescribePredictorResponse', describePredictorResponse_inputDataConfig - Describes the dataset group that contains the data to use to train the predictor.

$sel:predictorName:DescribePredictorResponse', describePredictorResponse_predictorName - The name of the predictor.

$sel:featurizationConfig:DescribePredictorResponse', describePredictorResponse_featurizationConfig - The featurization configuration.

$sel:encryptionConfig:DescribePredictorResponse', describePredictorResponse_encryptionConfig - An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

$sel:forecastTypes:DescribePredictorResponse', describePredictorResponse_forecastTypes - The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]

$sel:message:DescribePredictorResponse', describePredictorResponse_message - If an error occurred, an informational message about the error.

$sel:performHPO:DescribePredictorResponse', describePredictorResponse_performHPO - Whether the predictor is set to perform hyperparameter optimization (HPO).

$sel:lastModificationTime:DescribePredictorResponse', describePredictorResponse_lastModificationTime - The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.

$sel:httpStatus:DescribePredictorResponse', describePredictorResponse_httpStatus - The response's http status code.

Response Lenses

describePredictorResponse_forecastHorizon :: Lens' DescribePredictorResponse (Maybe Int) Source #

The number of time-steps of the forecast. The forecast horizon is also called the prediction length.

describePredictorResponse_status :: Lens' DescribePredictorResponse (Maybe Text) Source #

The status of the predictor. States include:

  • ACTIVE
  • CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED
  • DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED
  • CREATE_STOPPING, CREATE_STOPPED

The Status of the predictor must be ACTIVE before you can use the predictor to create a forecast.

describePredictorResponse_performAutoML :: Lens' DescribePredictorResponse (Maybe Bool) Source #

Whether the predictor is set to perform AutoML.

describePredictorResponse_autoMLAlgorithmArns :: Lens' DescribePredictorResponse (Maybe [Text]) Source #

When PerformAutoML is specified, the ARN of the chosen algorithm.

describePredictorResponse_trainingParameters :: Lens' DescribePredictorResponse (Maybe (HashMap Text Text)) Source #

The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes.

describePredictorResponse_algorithmArn :: Lens' DescribePredictorResponse (Maybe Text) Source #

The Amazon Resource Name (ARN) of the algorithm used for model training.

describePredictorResponse_predictorExecutionDetails :: Lens' DescribePredictorResponse (Maybe PredictorExecutionDetails) Source #

Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.

describePredictorResponse_datasetImportJobArns :: Lens' DescribePredictorResponse (Maybe [Text]) Source #

An array of the ARNs of the dataset import jobs used to import training data for the predictor.

describePredictorResponse_estimatedTimeRemainingInMinutes :: Lens' DescribePredictorResponse (Maybe Integer) Source #

The estimated time remaining in minutes for the predictor training job to complete.

describePredictorResponse_autoMLOverrideStrategy :: Lens' DescribePredictorResponse (Maybe AutoMLOverrideStrategy) Source #

The LatencyOptimized AutoML override strategy is only available in private beta. Contact AWS Support or your account manager to learn more about access privileges.

The AutoML strategy used to train the predictor. Unless LatencyOptimized is specified, the AutoML strategy optimizes predictor accuracy.

This parameter is only valid for predictors trained using AutoML.

describePredictorResponse_evaluationParameters :: Lens' DescribePredictorResponse (Maybe EvaluationParameters) Source #

Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.

describePredictorResponse_inputDataConfig :: Lens' DescribePredictorResponse (Maybe InputDataConfig) Source #

Describes the dataset group that contains the data to use to train the predictor.

describePredictorResponse_encryptionConfig :: Lens' DescribePredictorResponse (Maybe EncryptionConfig) Source #

An AWS Key Management Service (KMS) key and the AWS Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.

describePredictorResponse_forecastTypes :: Lens' DescribePredictorResponse (Maybe (NonEmpty Text)) Source #

The forecast types used during predictor training. Default value is ["0.1","0.5","0.9"]

describePredictorResponse_message :: Lens' DescribePredictorResponse (Maybe Text) Source #

If an error occurred, an informational message about the error.

describePredictorResponse_performHPO :: Lens' DescribePredictorResponse (Maybe Bool) Source #

Whether the predictor is set to perform hyperparameter optimization (HPO).

describePredictorResponse_lastModificationTime :: Lens' DescribePredictorResponse (Maybe UTCTime) Source #

The last time the resource was modified. The timestamp depends on the status of the job:

  • CREATE_PENDING - The CreationTime.
  • CREATE_IN_PROGRESS - The current timestamp.
  • CREATE_STOPPING - The current timestamp.
  • CREATE_STOPPED - When the job stopped.
  • ACTIVE or CREATE_FAILED - When the job finished or failed.