vector-0.12.3.0: Efficient Arrays
Copyright(c) Roman Leshchinskiy 2008-2010
LicenseBSD-style
MaintainerRoman Leshchinskiy <rl@cse.unsw.edu.au>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Vector.Primitive.Mutable

Description

Mutable primitive vectors.

Synopsis

Mutable vectors of primitive types

data MVector s a #

Mutable vectors of primitive types.

Constructors

MVector !Int !Int !(MutableByteArray s)

offset, length, underlying mutable byte array

Instances

Instances details
Prim a => MVector MVector a # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

basicLength :: MVector s a -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s a -> MVector s a #

basicOverlaps :: MVector s a -> MVector s a -> Bool #

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) a) #

basicInitialize :: PrimMonad m => MVector (PrimState m) a -> m () #

basicUnsafeReplicate :: PrimMonad m => Int -> a -> m (MVector (PrimState m) a) #

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) a -> Int -> m a #

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) a -> Int -> a -> m () #

basicClear :: PrimMonad m => MVector (PrimState m) a -> m () #

basicSet :: PrimMonad m => MVector (PrimState m) a -> a -> m () #

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) a -> MVector (PrimState m) a -> m () #

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) a -> MVector (PrimState m) a -> m () #

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) #

NFData1 (MVector s) # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

liftRnf :: (a -> ()) -> MVector s a -> () #

NFData (MVector s a) # 
Instance details

Defined in Data.Vector.Primitive.Mutable

Methods

rnf :: MVector s a -> () #

type STVector s = MVector s #

class Prim a #

Class of types supporting primitive array operations. This includes interfacing with GC-managed memory (functions suffixed with ByteArray#) and interfacing with unmanaged memory (functions suffixed with Addr#). Endianness is platform-dependent.

Instances

Instances details
Prim Char 
Instance details

Defined in Data.Primitive.Types

Prim Double 
Instance details

Defined in Data.Primitive.Types

Prim Float 
Instance details

Defined in Data.Primitive.Types

Prim Int 
Instance details

Defined in Data.Primitive.Types

Prim Int8 
Instance details

Defined in Data.Primitive.Types

Prim Int16 
Instance details

Defined in Data.Primitive.Types

Prim Int32 
Instance details

Defined in Data.Primitive.Types

Prim Int64 
Instance details

Defined in Data.Primitive.Types

Prim Word 
Instance details

Defined in Data.Primitive.Types

Prim Word8 
Instance details

Defined in Data.Primitive.Types

Prim Word16 
Instance details

Defined in Data.Primitive.Types

Prim Word32 
Instance details

Defined in Data.Primitive.Types

Prim Word64 
Instance details

Defined in Data.Primitive.Types

Prim CDev 
Instance details

Defined in Data.Primitive.Types

Prim CIno 
Instance details

Defined in Data.Primitive.Types

Prim CMode 
Instance details

Defined in Data.Primitive.Types

Prim COff 
Instance details

Defined in Data.Primitive.Types

Prim CPid 
Instance details

Defined in Data.Primitive.Types

Prim CSsize 
Instance details

Defined in Data.Primitive.Types

Prim CGid 
Instance details

Defined in Data.Primitive.Types

Prim CNlink 
Instance details

Defined in Data.Primitive.Types

Prim CUid 
Instance details

Defined in Data.Primitive.Types

Prim CCc 
Instance details

Defined in Data.Primitive.Types

Prim CSpeed 
Instance details

Defined in Data.Primitive.Types

Prim CTcflag 
Instance details

Defined in Data.Primitive.Types

Prim CRLim 
Instance details

Defined in Data.Primitive.Types

Prim CBlkSize 
Instance details

Defined in Data.Primitive.Types

Prim CBlkCnt 
Instance details

Defined in Data.Primitive.Types

Prim CClockId 
Instance details

Defined in Data.Primitive.Types

Prim CFsBlkCnt 
Instance details

Defined in Data.Primitive.Types

Prim CFsFilCnt 
Instance details

Defined in Data.Primitive.Types

Prim CId 
Instance details

Defined in Data.Primitive.Types

Prim CKey 
Instance details

Defined in Data.Primitive.Types

Prim CTimer 
Instance details

Defined in Data.Primitive.Types

Prim Fd 
Instance details

Defined in Data.Primitive.Types

Prim CChar 
Instance details

Defined in Data.Primitive.Types

Prim CSChar 
Instance details

Defined in Data.Primitive.Types

Prim CUChar 
Instance details

Defined in Data.Primitive.Types

Prim CShort 
Instance details

Defined in Data.Primitive.Types

Prim CUShort 
Instance details

Defined in Data.Primitive.Types

Prim CInt 
Instance details

Defined in Data.Primitive.Types

Prim CUInt 
Instance details

Defined in Data.Primitive.Types

Prim CLong 
Instance details

Defined in Data.Primitive.Types

Prim CULong 
Instance details

Defined in Data.Primitive.Types

Prim CLLong 
Instance details

Defined in Data.Primitive.Types

Prim CULLong 
Instance details

Defined in Data.Primitive.Types

Prim CBool 
Instance details

Defined in Data.Primitive.Types

Prim CFloat 
Instance details

Defined in Data.Primitive.Types

Prim CDouble 
Instance details

Defined in Data.Primitive.Types

Prim CPtrdiff 
Instance details

Defined in Data.Primitive.Types

Prim CSize 
Instance details

Defined in Data.Primitive.Types

Prim CWchar 
Instance details

Defined in Data.Primitive.Types

Prim CSigAtomic 
Instance details

Defined in Data.Primitive.Types

Prim CClock 
Instance details

Defined in Data.Primitive.Types

Prim CTime 
Instance details

Defined in Data.Primitive.Types

Prim CUSeconds 
Instance details

Defined in Data.Primitive.Types

Prim CSUSeconds 
Instance details

Defined in Data.Primitive.Types

Prim CIntPtr 
Instance details

Defined in Data.Primitive.Types

Prim CUIntPtr 
Instance details

Defined in Data.Primitive.Types

Prim CIntMax 
Instance details

Defined in Data.Primitive.Types

Prim CUIntMax 
Instance details

Defined in Data.Primitive.Types

Prim WordPtr

Since: primitive-0.7.1.0

Instance details

Defined in Data.Primitive.Types

Prim IntPtr

Since: primitive-0.7.1.0

Instance details

Defined in Data.Primitive.Types

Prim (StablePtr a) 
Instance details

Defined in Data.Primitive.Types

Prim (Ptr a) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Ptr a -> Int# #

alignment# :: Ptr a -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Ptr a #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Ptr a #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Ptr a -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Ptr a -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Ptr a #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Ptr a #) #

writeOffAddr# :: Addr# -> Int# -> Ptr a -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Ptr a -> State# s -> State# s #

Prim (FunPtr a) 
Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Min a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Min a -> Int# #

alignment# :: Min a -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Min a #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Min a #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Min a -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Min a -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Min a #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Min a #) #

writeOffAddr# :: Addr# -> Int# -> Min a -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Min a -> State# s -> State# s #

Prim a => Prim (Max a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Max a -> Int# #

alignment# :: Max a -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Max a #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Max a #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Max a -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Max a -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Max a #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Max a #) #

writeOffAddr# :: Addr# -> Int# -> Max a -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Max a -> State# s -> State# s #

Prim a => Prim (First a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Last a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Identity a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Dual a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Sum a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Sum a -> Int# #

alignment# :: Sum a -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Sum a #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Sum a #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Sum a -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Sum a -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Sum a #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Sum a #) #

writeOffAddr# :: Addr# -> Int# -> Sum a -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Sum a -> State# s -> State# s #

Prim a => Prim (Product a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Down a)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Prim a => Prim (Const a b)

Since: primitive-0.6.5.0

Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Const a b -> Int# #

alignment# :: Const a b -> Int# #

indexByteArray# :: ByteArray# -> Int# -> Const a b #

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Const a b #) #

writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s #

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s #

indexOffAddr# :: Addr# -> Int# -> Const a b #

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Const a b #) #

writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s #

setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s #

Accessors

Length information

length :: Prim a => MVector s a -> Int #

Length of the mutable vector.

null :: Prim a => MVector s a -> Bool #

Check whether the vector is empty

Extracting subvectors

slice #

Arguments

:: Prim a 
=> Int

i starting index

-> Int

n length

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. The vector must contain at least i+n elements.

init :: Prim a => MVector s a -> MVector s a #

tail :: Prim a => MVector s a -> MVector s a #

take :: Prim a => Int -> MVector s a -> MVector s a #

drop :: Prim a => Int -> MVector s a -> MVector s a #

splitAt :: Prim a => Int -> MVector s a -> (MVector s a, MVector s a) #

unsafeSlice #

Arguments

:: Prim a 
=> Int

starting index

-> Int

length of the slice

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. No bounds checks are performed.

unsafeInit :: Prim a => MVector s a -> MVector s a #

unsafeTail :: Prim a => MVector s a -> MVector s a #

unsafeTake :: Prim a => Int -> MVector s a -> MVector s a #

unsafeDrop :: Prim a => Int -> MVector s a -> MVector s a #

Overlapping

overlaps :: Prim a => MVector s a -> MVector s a -> Bool #

Check whether two vectors overlap.

Construction

Initialisation

new :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) #

Create a mutable vector of the given length.

unsafeNew :: (PrimMonad m, Prim a) => Int -> m (MVector (PrimState m) a) #

Create a mutable vector of the given length. The vector content is uninitialized, which means it is filled with whatever underlying memory buffer happens to contain.

Since: 0.5

replicate :: (PrimMonad m, Prim a) => Int -> a -> m (MVector (PrimState m) a) #

Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.

replicateM :: (PrimMonad m, Prim a) => Int -> m a -> m (MVector (PrimState m) a) #

Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.

generate :: (PrimMonad m, Prim a) => Int -> (Int -> a) -> m (MVector (PrimState m) a) #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the function to each index.

Since: 0.12.3.0

generateM :: (PrimMonad m, Prim a) => Int -> (Int -> m a) -> m (MVector (PrimState m) a) #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the monadic function to each index. Iteration starts at index 0.

Since: 0.12.3.0

clone :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m (MVector (PrimState m) a) #

Create a copy of a mutable vector.

Growing

grow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) #

Grow a primitive vector by the given number of elements. The number must be non-negative. Same semantics as in grow for generic vector.

Examples

Expand
>>> import qualified Data.Vector.Primitive as VP
>>> import qualified Data.Vector.Primitive.Mutable as MVP
>>> mv <- VP.thaw $ VP.fromList ([10, 20, 30] :: [Int])
>>> mv' <- MVP.grow mv 2

Extra memory at the end of the newly allocated vector is initialized to 0 bytes, which for Prim instance will usually correspond to some default value for a particular type, eg. 0 for Int, NUL for Char, etc. However, if unsafeGrow was used instead this would not have been guaranteed and some garbage would be there instead:

>>> VP.unsafeFreeze mv'
[10,20,30,0,0]

Having the extra space we can write new values in there:

>>> MVP.write mv' 3 999
>>> VP.unsafeFreeze mv'
[10,20,30,999,0]

It is important to note that the source mutable vector is not affected when the newly allocated one is mutated.

>>> MVP.write mv' 2 888
>>> VP.unsafeFreeze mv'
[10,20,888,999,0]
>>> VP.unsafeFreeze mv
[10,20,30]

Since: 0.5

unsafeGrow :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) #

Grow a vector by the given number of elements. The number must be non-negative but this is not checked. Same semantics as in unsafeGrow for generic vector.

Since: 0.5

Restricting memory usage

clear :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> m () #

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

Accessing individual elements

read :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a #

Yield the element at the given position.

write :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () #

Replace the element at the given position.

modify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () #

Modify the element at the given position.

modifyM :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () #

Modify the element at the given position using a monadic function.

Since: 0.12.3.0

swap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () #

Swap the elements at the given positions.

exchange :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m a #

Replace the element at the given position and return the old element.

unsafeRead :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> m a #

Yield the element at the given position. No bounds checks are performed.

unsafeWrite :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m () #

Replace the element at the given position. No bounds checks are performed.

unsafeModify :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () #

Modify the element at the given position. No bounds checks are performed.

unsafeModifyM :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () #

Modify the element at the given position using a monadic function. No bounds checks are performed.

Since: 0.12.3.0

unsafeSwap :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> Int -> m () #

Swap the elements at the given positions. No bounds checks are performed.

unsafeExchange :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> Int -> a -> m a #

Replace the element at the given position and return the old element. No bounds checks are performed.

Folds

mapM_ :: (PrimMonad m, Prim a) => (a -> m b) -> MVector (PrimState m) a -> m () #

O(n) Apply the monadic action to every element of the vector, discarding the results.

Since: 0.12.3.0

imapM_ :: (PrimMonad m, Prim a) => (Int -> a -> m b) -> MVector (PrimState m) a -> m () #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results.

Since: 0.12.3.0

forM_ :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (a -> m b) -> m () #

O(n) Apply the monadic action to every element of the vector, discarding the results. It's same as the flip mapM_.

Since: 0.12.3.0

iforM_ :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> (Int -> a -> m b) -> m () #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results. It's same as the flip imapM_.

Since: 0.12.3.0

foldl :: (PrimMonad m, Prim a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure left fold.

Since: 0.12.3.0

foldl' :: (PrimMonad m, Prim a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure left fold with strict accumulator.

Since: 0.12.3.0

foldM :: (PrimMonad m, Prim a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic fold.

Since: 0.12.3.0

foldM' :: (PrimMonad m, Prim a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic fold with strict accumulator.

Since: 0.12.3.0

foldr :: (PrimMonad m, Prim a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure right fold.

Since: 0.12.3.0

foldr' :: (PrimMonad m, Prim a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure right fold with strict accumulator.

Since: 0.12.3.0

foldrM :: (PrimMonad m, Prim a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic right fold.

Since: 0.12.3.0

foldrM' :: (PrimMonad m, Prim a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic right fold with strict accumulator.

Since: 0.12.3.0

ifoldl :: (PrimMonad m, Prim a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure left fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldl' :: (PrimMonad m, Prim a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure left fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldM :: (PrimMonad m, Prim a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldM' :: (PrimMonad m, Prim a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

ifoldr :: (PrimMonad m, Prim a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure right fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldr' :: (PrimMonad m, Prim a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b #

O(n) Pure right fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldrM :: (PrimMonad m, Prim a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic right fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldrM' :: (PrimMonad m, Prim a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b #

O(n) Monadic right fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

Modifying vectors

nextPermutation :: (PrimMonad m, Ord e, Prim e) => MVector (PrimState m) e -> m Bool #

Compute the next (lexicographically) permutation of given vector in-place. Returns False when input is the last permutation

Filling and copying

set :: (PrimMonad m, Prim a) => MVector (PrimState m) a -> a -> m () #

Set all elements of the vector to the given value.

copy #

Arguments

:: (PrimMonad m, Prim a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap.

move #

Arguments

:: (PrimMonad m, Prim a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length.

If the vectors do not overlap, then this is equivalent to copy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

unsafeCopy #

Arguments

:: (PrimMonad m, Prim a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.

unsafeMove #

Arguments

:: (PrimMonad m, Prim a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length, but this is not checked.

If the vectors do not overlap, then this is equivalent to unsafeCopy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.