Copyright | (c) The University of Glasgow 2001 |
---|---|
License | BSD-style (see the file LICENSE in the 'random' repository) |
Maintainer | libraries@haskell.org |
Stability | stable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
This library deals with the common task of pseudo-random number generation.
Synopsis
- module System.Random
- class Monad m => StatefulGen g m where
- uniformWord32R :: Word32 -> g -> m Word32
- uniformWord64R :: Word64 -> g -> m Word64
- uniformWord8 :: g -> m Word8
- uniformWord16 :: g -> m Word16
- uniformWord32 :: g -> m Word32
- uniformWord64 :: g -> m Word64
- uniformShortByteString :: Int -> g -> m ShortByteString
- class StatefulGen (MutableGen f m) m => FrozenGen f m where
- type MutableGen f m = (g :: Type) | g -> f
- freezeGen :: MutableGen f m -> m f
- thawGen :: f -> m (MutableGen f m)
- class (RandomGen r, StatefulGen g m) => RandomGenM g r m | g -> r where
- applyRandomGenM :: (r -> (a, r)) -> g -> m a
- withMutableGen :: FrozenGen f m => f -> (MutableGen f m -> m a) -> m (a, f)
- withMutableGen_ :: FrozenGen f m => f -> (MutableGen f m -> m a) -> m a
- randomM :: (RandomGenM g r m, Random a) => g -> m a
- randomRM :: (RandomGenM g r m, Random a) => (a, a) -> g -> m a
- splitGenM :: RandomGenM g r m => g -> m r
- newtype StateGen g = StateGen {
- unStateGen :: g
- data StateGenM g = StateGenM
- runStateGen :: RandomGen g => g -> (StateGenM g -> State g a) -> (a, g)
- runStateGen_ :: RandomGen g => g -> (StateGenM g -> State g a) -> a
- runStateGenT :: RandomGen g => g -> (StateGenM g -> StateT g m a) -> m (a, g)
- runStateGenT_ :: (RandomGen g, Functor f) => g -> (StateGenM g -> StateT g f a) -> f a
- runStateGenST :: RandomGen g => g -> (forall s. StateGenM g -> StateT g (ST s) a) -> (a, g)
- newtype AtomicGen g = AtomicGen {
- unAtomicGen :: g
- newtype AtomicGenM g = AtomicGenM {
- unAtomicGenM :: IORef g
- newAtomicGenM :: MonadIO m => g -> m (AtomicGenM g)
- applyAtomicGen :: MonadIO m => (g -> (a, g)) -> AtomicGenM g -> m a
- newtype IOGen g = IOGen {
- unIOGen :: g
- newtype IOGenM g = IOGenM {}
- newIOGenM :: MonadIO m => g -> m (IOGenM g)
- applyIOGen :: MonadIO m => (g -> (a, g)) -> IOGenM g -> m a
- newtype STGen g = STGen {
- unSTGen :: g
- newtype STGenM g s = STGenM {}
- newSTGenM :: g -> ST s (STGenM g s)
- applySTGen :: (g -> (a, g)) -> STGenM g s -> ST s a
- runSTGen :: RandomGen g => g -> (forall s. STGenM g s -> ST s a) -> (a, g)
- runSTGen_ :: RandomGen g => g -> (forall s. STGenM g s -> ST s a) -> a
- class Uniform a where
- uniformM :: StatefulGen g m => g -> m a
- uniformListM :: (StatefulGen g m, Uniform a) => Int -> g -> m [a]
- class UniformRange a where
- uniformRM :: StatefulGen g m => (a, a) -> g -> m a
- genShortByteStringIO :: MonadIO m => Int -> m Word64 -> m ShortByteString
- genShortByteStringST :: Int -> ST s Word64 -> ST s ShortByteString
- uniformByteStringM :: StatefulGen g m => Int -> g -> m ByteString
- uniformDouble01M :: StatefulGen g m => g -> m Double
- uniformDoublePositive01M :: StatefulGen g m => g -> m Double
- uniformFloat01M :: StatefulGen g m => g -> m Float
- uniformFloatPositive01M :: StatefulGen g m => g -> m Float
Pure Random Generator
module System.Random
Monadic Random Generator
This module provides type classes and instances for the following concepts:
- Monadic pseudo-random number generators
StatefulGen
is an interface to monadic pseudo-random number generators.- Monadic adapters
StateGenM
,AtomicGenM
,IOGenM
andSTGenM
turn aRandomGen
instance into aStatefulGen
instance.- Drawing from a range
UniformRange
is used to generate a value of a type uniformly within a range.This library provides instances of
UniformRange
for many common numeric types.- Drawing from the entire domain of a type
Uniform
is used to generate a value of a type uniformly over all possible values of that type.This library provides instances of
Uniform
for many common bounded numeric types.
Usage
In monadic code, use the relevant Uniform
and UniformRange
instances to
generate pseudo-random values via uniformM
and uniformRM
, respectively.
As an example, rollsM
generates n
pseudo-random values of Word
in the
range [1, 6]
in a StatefulGen
context; given a monadic pseudo-random
number generator, you can run this probabilistic computation as follows:
>>>
:{
let rollsM :: StatefulGen g m => Int -> g -> m [Word] rollsM n = replicateM n . uniformRM (1, 6) in do monadicGen <- MWC.create rollsM 10 monadicGen :: IO [Word] :} [3,4,3,1,4,6,1,6,1,4]
Given a pure pseudo-random number generator, you can run the monadic
pseudo-random number computation rollsM
in an IO
or ST
context by
applying a monadic adapter like AtomicGenM
, IOGenM
or STGenM
(see monadic-adapters) to the pure pseudo-random number
generator.
>>>
:{
let rollsM :: StatefulGen g m => Int -> g -> m [Word] rollsM n = replicateM n . uniformRM (1, 6) pureGen = mkStdGen 42 in newIOGenM pureGen >>= rollsM 10 :: IO [Word] :} [1,1,3,2,4,5,3,4,6,2]
Mutable pseudo-random number generator interfaces
Pseudo-random number generators come in two flavours: pure and monadic.
RandomGen
: pure pseudo-random number generators- See System.Random module.
StatefulGen
: monadic pseudo-random number generators- These generators
mutate their own state as they produce pseudo-random values. They
generally live in
ST
orIO
or some transformer that implementsPrimMonad
.
class Monad m => StatefulGen g m where #
StatefulGen
is an interface to monadic pseudo-random number generators.
uniformWord32R :: Word32 -> g -> m Word32 #
uniformWord32R upperBound g
generates a Word32
that is uniformly
distributed over the range [0, upperBound]
.
Since: 1.2.0
uniformWord64R :: Word64 -> g -> m Word64 #
uniformWord64R upperBound g
generates a Word64
that is uniformly
distributed over the range [0, upperBound]
.
Since: 1.2.0
uniformWord8 :: g -> m Word8 #
Generates a Word8
that is uniformly distributed over the entire Word8
range.
The default implementation extracts a Word8
from uniformWord32
.
Since: 1.2.0
uniformWord16 :: g -> m Word16 #
Generates a Word16
that is uniformly distributed over the entire
Word16
range.
The default implementation extracts a Word16
from uniformWord32
.
Since: 1.2.0
uniformWord32 :: g -> m Word32 #
Generates a Word32
that is uniformly distributed over the entire
Word32
range.
The default implementation extracts a Word32
from uniformWord64
.
Since: 1.2.0
uniformWord64 :: g -> m Word64 #
Generates a Word64
that is uniformly distributed over the entire
Word64
range.
The default implementation combines two Word32
from uniformWord32
into
one Word64
.
Since: 1.2.0
uniformShortByteString :: Int -> g -> m ShortByteString #
uniformShortByteString n g
generates a ShortByteString
of length n
filled with pseudo-random bytes.
Since: 1.2.0
default uniformShortByteString :: MonadIO m => Int -> g -> m ShortByteString #
Instances
class StatefulGen (MutableGen f m) m => FrozenGen f m where #
This class is designed for stateful pseudo-random number generators that can be saved as and restored from an immutable data type.
Since: 1.2.0
type MutableGen f m = (g :: Type) | g -> f #
freezeGen :: MutableGen f m -> m f #
Saves the state of the pseudo-random number generator as a frozen seed.
Since: 1.2.0
thawGen :: f -> m (MutableGen f m) #
Restores the pseudo-random number generator from its frozen seed.
Since: 1.2.0
Instances
(RandomGen g, MonadState g m) => FrozenGen (StateGen g) m # | |
Defined in System.Random.Internal type MutableGen (StateGen g) m = (g :: Type) # freezeGen :: MutableGen (StateGen g) m -> m (StateGen g) # thawGen :: StateGen g -> m (MutableGen (StateGen g) m) # | |
(RandomGen g, MonadIO m) => FrozenGen (IOGen g) m # | |
Defined in System.Random.Stateful type MutableGen (IOGen g) m = (g :: Type) # freezeGen :: MutableGen (IOGen g) m -> m (IOGen g) # thawGen :: IOGen g -> m (MutableGen (IOGen g) m) # | |
(RandomGen g, MonadIO m) => FrozenGen (AtomicGen g) m # | |
Defined in System.Random.Stateful type MutableGen (AtomicGen g) m = (g :: Type) # freezeGen :: MutableGen (AtomicGen g) m -> m (AtomicGen g) # thawGen :: AtomicGen g -> m (MutableGen (AtomicGen g) m) # | |
RandomGen g => FrozenGen (STGen g) (ST s) # | |
Defined in System.Random.Stateful type MutableGen (STGen g) (ST s) = (g :: Type) # |
class (RandomGen r, StatefulGen g m) => RandomGenM g r m | g -> r where #
applyRandomGenM :: (r -> (a, r)) -> g -> m a #
Instances
(RandomGen r, MonadState r m) => RandomGenM (StateGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> StateGenM r -> m a # | |
(RandomGen r, MonadIO m) => RandomGenM (IOGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> IOGenM r -> m a # | |
(RandomGen r, MonadIO m) => RandomGenM (AtomicGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> AtomicGenM r -> m a # | |
RandomGen r => RandomGenM (STGenM r s) r (ST s) # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> STGenM r s -> ST s a # |
withMutableGen :: FrozenGen f m => f -> (MutableGen f m -> m a) -> m (a, f) #
Runs a mutable pseudo-random number generator from its Frozen
state.
Examples
>>>
import Data.Int (Int8)
>>>
withMutableGen (IOGen (mkStdGen 217)) (uniformListM 5) :: IO ([Int8], IOGen StdGen)
([-74,37,-50,-2,3],IOGen {unIOGen = StdGen {unStdGen = SMGen 4273268533320920145 15251669095119325999}})
Since: 1.2.0
withMutableGen_ :: FrozenGen f m => f -> (MutableGen f m -> m a) -> m a #
Same as withMutableGen
, but only returns the generated value.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
withMutableGen_ (IOGen pureGen) (uniformRM (1 :: Int, 6 :: Int))
4
Since: 1.2.0
randomM :: (RandomGenM g r m, Random a) => g -> m a #
Generates a pseudo-random value using monadic interface and Random
instance.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
g <- newIOGenM pureGen
>>>
randomM g :: IO Double
0.5728354935654512
Since: 1.2.0
randomRM :: (RandomGenM g r m, Random a) => (a, a) -> g -> m a #
Generates a pseudo-random value using monadic interface and Random
instance.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
g <- newIOGenM pureGen
>>>
randomRM (1, 100) g :: IO Int
52
Since: 1.2.0
splitGenM :: RandomGenM g r m => g -> m r #
Splits a pseudo-random number generator into two. Overwrites the mutable wrapper with one of the resulting generators and returns the other.
Since: 1.2.0
Monadic adapters for pure pseudo-random number generators
Pure pseudo-random number generators can be used in monadic code via the
adapters StateGenM
, AtomicGenM
, IOGenM
and STGenM
.
StateGenM
can be used in any state monad. With strictStateT
there is no performance overhead compared to using theRandomGen
instance directly.StateGenM
is not safe to use in the presence of exceptions and concurrency.AtomicGenM
is safe in the presence of exceptions and concurrency since it performs all actions atomically.IOGenM
is a wrapper around anIORef
that holds a pure generator.IOGenM
is safe in the presence of exceptions, but not concurrency.STGenM
is a wrapper around anSTRef
that holds a pure generator.STGenM
is safe in the presence of exceptions, but not concurrency.
Pure adapter
Wrapper for pure state gen, which acts as an immutable seed for the corresponding
stateful generator StateGenM
Since: 1.2.0
StateGen | |
|
Instances
Opaque data type that carries the type of a pure pseudo-random number generator.
Since: 1.2.0
Instances
(RandomGen g, MonadState g m) => StatefulGen (StateGenM g) m # | |
Defined in System.Random.Internal uniformWord32R :: Word32 -> StateGenM g -> m Word32 # uniformWord64R :: Word64 -> StateGenM g -> m Word64 # uniformWord8 :: StateGenM g -> m Word8 # uniformWord16 :: StateGenM g -> m Word16 # uniformWord32 :: StateGenM g -> m Word32 # uniformWord64 :: StateGenM g -> m Word64 # uniformShortByteString :: Int -> StateGenM g -> m ShortByteString # | |
(RandomGen r, MonadState r m) => RandomGenM (StateGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> StateGenM r -> m a # |
runStateGen :: RandomGen g => g -> (StateGenM g -> State g a) -> (a, g) #
Runs a monadic generating action in the State
monad using a pure
pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
runStateGen pureGen randomM :: (Int, StdGen)
(7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627})
Since: 1.2.0
runStateGen_ :: RandomGen g => g -> (StateGenM g -> State g a) -> a #
Runs a monadic generating action in the State
monad using a pure
pseudo-random number generator. Returns only the resulting pseudo-random
value.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
runStateGen_ pureGen randomM :: Int
7879794327570578227
Since: 1.2.0
runStateGenT :: RandomGen g => g -> (StateGenM g -> StateT g m a) -> m (a, g) #
Runs a monadic generating action in the StateT
monad using a pure
pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
runStateGenT pureGen randomM :: IO (Int, StdGen)
(7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627})
Since: 1.2.0
runStateGenT_ :: (RandomGen g, Functor f) => g -> (StateGenM g -> StateT g f a) -> f a #
Runs a monadic generating action in the StateT
monad using a pure
pseudo-random number generator. Returns only the resulting pseudo-random
value.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
runStateGenT_ pureGen randomM :: IO Int
7879794327570578227
Since: 1.2.0
runStateGenST :: RandomGen g => g -> (forall s. StateGenM g -> StateT g (ST s) a) -> (a, g) #
Runs a monadic generating action in the ST
monad using a pure
pseudo-random number generator.
Since: 1.2.0
Mutable adapter with atomic operations
Frozen version of mutable AtomicGenM
generator
Since: 1.2.0
AtomicGen | |
|
Instances
newtype AtomicGenM g #
Wraps an IORef
that holds a pure pseudo-random number generator. All
operations are performed atomically.
AtomicGenM
is safe in the presence of exceptions and concurrency.AtomicGenM
is the slowest of the monadic adapters due to the overhead of its atomic operations.
Since: 1.2.0
AtomicGenM | |
|
Instances
(RandomGen g, MonadIO m) => StatefulGen (AtomicGenM g) m # | |
Defined in System.Random.Stateful uniformWord32R :: Word32 -> AtomicGenM g -> m Word32 # uniformWord64R :: Word64 -> AtomicGenM g -> m Word64 # uniformWord8 :: AtomicGenM g -> m Word8 # uniformWord16 :: AtomicGenM g -> m Word16 # uniformWord32 :: AtomicGenM g -> m Word32 # uniformWord64 :: AtomicGenM g -> m Word64 # uniformShortByteString :: Int -> AtomicGenM g -> m ShortByteString # | |
(RandomGen r, MonadIO m) => RandomGenM (AtomicGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> AtomicGenM r -> m a # |
newAtomicGenM :: MonadIO m => g -> m (AtomicGenM g) #
Creates a new AtomicGenM
.
Since: 1.2.0
applyAtomicGen :: MonadIO m => (g -> (a, g)) -> AtomicGenM g -> m a #
Atomically applies a pure operation to the wrapped pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
g <- newAtomicGenM pureGen
>>>
applyAtomicGen random g :: IO Int
7879794327570578227
Since: 1.2.0
Mutable adapter in IO
Frozen version of mutable IOGenM
generator
Since: 1.2.0
Instances
Eq g => Eq (IOGen g) # | |
Ord g => Ord (IOGen g) # | |
Show g => Show (IOGen g) # | |
Storable g => Storable (IOGen g) # | |
NFData g => NFData (IOGen g) # | |
Defined in System.Random.Stateful | |
RandomGen g => RandomGen (IOGen g) # | |
Defined in System.Random.Stateful next :: IOGen g -> (Int, IOGen g) # genWord8 :: IOGen g -> (Word8, IOGen g) # genWord16 :: IOGen g -> (Word16, IOGen g) # genWord32 :: IOGen g -> (Word32, IOGen g) # genWord64 :: IOGen g -> (Word64, IOGen g) # genWord32R :: Word32 -> IOGen g -> (Word32, IOGen g) # genWord64R :: Word64 -> IOGen g -> (Word64, IOGen g) # genShortByteString :: Int -> IOGen g -> (ShortByteString, IOGen g) # | |
(RandomGen g, MonadIO m) => FrozenGen (IOGen g) m # | |
Defined in System.Random.Stateful type MutableGen (IOGen g) m = (g :: Type) # freezeGen :: MutableGen (IOGen g) m -> m (IOGen g) # thawGen :: IOGen g -> m (MutableGen (IOGen g) m) # | |
type MutableGen (IOGen g) m # | |
Defined in System.Random.Stateful |
Wraps an IORef
that holds a pure pseudo-random number generator.
IOGenM
is safe in the presence of exceptions, but not concurrency.IOGenM
is slower thanStateGenM
due to the extra pointer indirection.IOGenM
is faster thanAtomicGenM
since theIORef
operations used byIOGenM
are not atomic.
An example use case is writing pseudo-random bytes into a file:
>>>
import UnliftIO.Temporary (withSystemTempFile)
>>>
import Data.ByteString (hPutStr)
>>>
let ioGen g = withSystemTempFile "foo.bin" $ \_ h -> uniformRM (0, 100) g >>= flip uniformByteStringM g >>= hPutStr h
and then run it:
>>>
newIOGenM (mkStdGen 1729) >>= ioGen
Since: 1.2.0
Instances
(RandomGen g, MonadIO m) => StatefulGen (IOGenM g) m # | |
Defined in System.Random.Stateful uniformWord32R :: Word32 -> IOGenM g -> m Word32 # uniformWord64R :: Word64 -> IOGenM g -> m Word64 # uniformWord8 :: IOGenM g -> m Word8 # uniformWord16 :: IOGenM g -> m Word16 # uniformWord32 :: IOGenM g -> m Word32 # uniformWord64 :: IOGenM g -> m Word64 # uniformShortByteString :: Int -> IOGenM g -> m ShortByteString # | |
(RandomGen r, MonadIO m) => RandomGenM (IOGenM r) r m # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> IOGenM r -> m a # |
applyIOGen :: MonadIO m => (g -> (a, g)) -> IOGenM g -> m a #
Applies a pure operation to the wrapped pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
g <- newIOGenM pureGen
>>>
applyIOGen random g :: IO Int
7879794327570578227
Since: 1.2.0
Mutable adapter in ST
Frozen version of mutable STGenM
generator
Since: 1.2.0
Instances
Eq g => Eq (STGen g) # | |
Ord g => Ord (STGen g) # | |
Show g => Show (STGen g) # | |
Storable g => Storable (STGen g) # | |
NFData g => NFData (STGen g) # | |
Defined in System.Random.Stateful | |
RandomGen g => RandomGen (STGen g) # | |
Defined in System.Random.Stateful next :: STGen g -> (Int, STGen g) # genWord8 :: STGen g -> (Word8, STGen g) # genWord16 :: STGen g -> (Word16, STGen g) # genWord32 :: STGen g -> (Word32, STGen g) # genWord64 :: STGen g -> (Word64, STGen g) # genWord32R :: Word32 -> STGen g -> (Word32, STGen g) # genWord64R :: Word64 -> STGen g -> (Word64, STGen g) # genShortByteString :: Int -> STGen g -> (ShortByteString, STGen g) # | |
RandomGen g => FrozenGen (STGen g) (ST s) # | |
Defined in System.Random.Stateful type MutableGen (STGen g) (ST s) = (g :: Type) # | |
type MutableGen (STGen g) (ST s) # | |
Defined in System.Random.Stateful |
Wraps an STRef
that holds a pure pseudo-random number generator.
STGenM
is safe in the presence of exceptions, but not concurrency.STGenM
is slower thanStateGenM
due to the extra pointer indirection.
Since: 1.2.0
Instances
RandomGen r => RandomGenM (STGenM r s) r (ST s) # | |
Defined in System.Random.Stateful applyRandomGenM :: (r -> (a, r)) -> STGenM r s -> ST s a # | |
RandomGen g => StatefulGen (STGenM g s) (ST s) # | |
Defined in System.Random.Stateful uniformWord32R :: Word32 -> STGenM g s -> ST s Word32 # uniformWord64R :: Word64 -> STGenM g s -> ST s Word64 # uniformWord8 :: STGenM g s -> ST s Word8 # uniformWord16 :: STGenM g s -> ST s Word16 # uniformWord32 :: STGenM g s -> ST s Word32 # uniformWord64 :: STGenM g s -> ST s Word64 # uniformShortByteString :: Int -> STGenM g s -> ST s ShortByteString # |
applySTGen :: (g -> (a, g)) -> STGenM g s -> ST s a #
Applies a pure operation to the wrapped pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
(runSTGen pureGen (\g -> applySTGen random g)) :: (Int, StdGen)
(7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627})
Since: 1.2.0
runSTGen :: RandomGen g => g -> (forall s. STGenM g s -> ST s a) -> (a, g) #
Runs a monadic generating action in the ST
monad using a pure
pseudo-random number generator.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
(runSTGen pureGen (\g -> applySTGen random g)) :: (Int, StdGen)
(7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627})
Since: 1.2.0
runSTGen_ :: RandomGen g => g -> (forall s. STGenM g s -> ST s a) -> a #
Runs a monadic generating action in the ST
monad using a pure
pseudo-random number generator. Returns only the resulting pseudo-random
value.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
(runSTGen_ pureGen (\g -> applySTGen random g)) :: Int
7879794327570578227
Since: 1.2.0
Pseudo-random values of various types
This library provides two type classes to generate pseudo-random values:
UniformRange
is used to generate a value of a type uniformly within a range.Uniform
is used to generate a value of a type uniformly over all possible values of that type.
Types may have instances for both or just one of UniformRange
and
Uniform
. A few examples illustrate this:
Int
,Word16
andBool
are instances of bothUniformRange
andUniform
.Integer
,Float
andDouble
each have an instance forUniformRange
but noUniform
instance.- A hypothetical type
Radian
representing angles by taking values in the range[0, 2π)
has a trivialUniform
instance, but noUniformRange
instance: the problem is that two givenRadian
values always span two ranges, one clockwise and one anti-clockwise. - It is trivial to construct a
Uniform (a, b)
instance givenUniform a
andUniform b
(and this library provides this tuple instance). - On the other hand, there is no correct way to construct a
UniformRange (a, b)
instance based on justUniformRange a
andUniformRange b
.
The class of types for which a uniformly distributed value can be drawn from all possible values of the type.
Since: 1.2.0
uniformM :: StatefulGen g m => g -> m a #
Generates a value uniformly distributed over all possible values of that type.
Since: 1.2.0
Instances
uniformListM :: (StatefulGen g m, Uniform a) => Int -> g -> m [a] #
Generates a list of pseudo-random values.
Examples
>>>
import System.Random.Stateful
>>>
let pureGen = mkStdGen 137
>>>
g <- newIOGenM pureGen
>>>
uniformListM 10 g :: IO [Bool]
[True,True,True,True,False,True,True,False,False,False]
Since: 1.2.0
class UniformRange a where #
The class of types for which a uniformly distributed value can be drawn from a range.
Since: 1.2.0
uniformRM :: StatefulGen g m => (a, a) -> g -> m a #
Generates a value uniformly distributed over the provided range, which is interpreted as inclusive in the lower and upper bound.
uniformRM (1 :: Int, 4 :: Int)
generates values uniformly from the set \(\{1,2,3,4\}\)uniformRM (1 :: Float, 4 :: Float)
generates values uniformly from the set \(\{x\;|\;1 \le x \le 4\}\)
The following law should hold to make the function always defined:
uniformRM (a, b) = uniformRM (b, a)
Since: 1.2.0
Instances
Generators for sequences of pseudo-random bytes
:: MonadIO m | |
=> Int | Number of bytes to generate |
-> m Word64 | IO action that can generate 8 random bytes at a time |
-> m ShortByteString |
Efficiently generates a sequence of pseudo-random bytes in a platform independent manner.
Since: 1.2.0
genShortByteStringST :: Int -> ST s Word64 -> ST s ShortByteString #
Same as genShortByteStringIO
, but runs in ST
.
Since: 1.2.0
uniformByteStringM :: StatefulGen g m => Int -> g -> m ByteString #
Generates a pseudo-random ByteString
of the specified size.
Since: 1.2.0
uniformDouble01M :: StatefulGen g m => g -> m Double #
uniformDoublePositive01M :: StatefulGen g m => g -> m Double #
Generates uniformly distributed Double
in the range
\((0, 1]\). Number is generated as \(2^{-64}/2+\operatorname{uniformDouble01M}\).
Constant is 1/2 of smallest nonzero value which could be generated
by uniformDouble01M
.
Since: 1.2.0
uniformFloat01M :: StatefulGen g m => g -> m Float #
uniformFloatPositive01M :: StatefulGen g m => g -> m Float #
Generates uniformly distributed Float
in the range
\((0, 1]\). Number is generated as \(2^{-32}/2+\operatorname{uniformFloat01M}\).
Constant is 1/2 of smallest nonzero value which could be generated
by uniformFloat01M
.
Since: 1.2.0
Appendix
How to implement StatefulGen
Typically, a monadic pseudo-random number generator has facilities to save and restore its internal state in addition to generating pseudo-random numbers.
Here is an example instance for the monadic pseudo-random number generator
from the mwc-random
package:
instance (s ~ PrimState m, PrimMonad m) => StatefulGen (MWC.Gen s) m where uniformWord8 = MWC.uniform uniformWord16 = MWC.uniform uniformWord32 = MWC.uniform uniformWord64 = MWC.uniform uniformShortByteString n g = unsafeSTToPrim (genShortByteStringST n (MWC.uniform g))
instance PrimMonad m => FrozenGen MWC.Seed m where type MutableGen MWC.Seed m = MWC.Gen (PrimState m) thawGen = MWC.restore freezeGen = MWC.save
FrozenGen
FrozenGen
gives us ability to use any stateful pseudo-random number generator in its
immutable form, if one exists that is. This concept is commonly known as a seed, which
allows us to save and restore the actual mutable state of a pseudo-random number
generator. The biggest benefit that can be drawn from a polymorphic access to a
stateful pseudo-random number generator in a frozen form is the ability to serialize,
deserialize and possibly even use the stateful generator in a pure setting without
knowing the actual type of a generator ahead of time. For example we can write a
function that accepts a frozen state of some pseudo-random number generator and
produces a short list with random even integers.
>>>
import Data.Int (Int8)
>>>
:{
myCustomRandomList :: FrozenGen f m => f -> m [Int8] myCustomRandomList f = withMutableGen_ f $ \gen -> do len <- uniformRM (5, 10) gen replicateM len $ do x <- uniformM gen pure $ if even x then x else x + 1 :}
and later we can apply it to a frozen version of a stateful generator, such as STGen
:
>>>
print $ runST $ myCustomRandomList (STGen (mkStdGen 217))
[-50,-2,4,-8,-58,-40,24,-32,-110,24]
or a Seed
from mwc-random
:
>>>
import Data.Vector.Primitive as P
>>>
print $ runST $ myCustomRandomList (MWC.toSeed (P.fromList [1,2,3]))
[24,40,10,40,-8,48,-78,70,-12]
Alternatively, instead of discarding the final state of the generator, as it happens
above, we could have used withMutableGen
, which together with the result would give
us back its frozen form. This would allow us to store the end state of our generator
somewhere for the later reuse.
Floating point number caveats
The UniformRange
instances for Float
and Double
use the following
procedure to generate a random value in a range for uniformRM (a, b) g
:
If \(a = b\), return \(a\). Otherwise:
Generate \(x\) uniformly such that \(0 \leq x \leq 1\).
The method by which \(x\) is sampled does not cover all representable floating point numbers in the unit interval. The method never generates denormal floating point numbers, for example.
Return \(x \cdot a + (1 - x) \cdot b\).
Due to rounding errors, floating point operations are neither associative nor distributive the way the corresponding operations on real numbers are. Additionally, floating point numbers admit special values
NaN
as well as negative and positive infinity.
For pathological values, step 2 can yield surprising results.
The result may be greater than
max a b
.>>>
:{
let (a, b, x) = (-2.13238e-29, -2.1323799e-29, 0.27736077) result = x * a + (1 - x) * b :: Float in (result, result > max a b) :} (-2.1323797e-29,True)The result may be smaller than
min a b
.>>>
:{
let (a, b, x) = (-1.9087862, -1.908786, 0.4228573) result = x * a + (1 - x) * b :: Float in (result, result < min a b) :} (-1.9087863,True)
What happens when NaN
or Infinity
are given to uniformRM
? We first
define them as constants:
>>>
nan = read "NaN" :: Float
>>>
inf = read "Infinity" :: Float
If at least one of \(a\) or \(b\) is
NaN
, the result isNaN
.>>>
let (a, b, x) = (nan, 1, 0.5) in x * a + (1 - x) * b
NaN>>>
let (a, b, x) = (-1, nan, 0.5) in x * a + (1 - x) * b
NaN- If \(a\) is
-Infinity
and \(b\) isInfinity
, the result isNaN
. >>> let (a, b, x) = (-inf, inf, 0.5) in x * a + (1 - x) * b NaN Otherwise, if \(a\) is
Infinity
or-Infinity
, the result is \(a\).>>>
let (a, b, x) = (inf, 1, 0.5) in x * a + (1 - x) * b
Infinity>>>
let (a, b, x) = (-inf, 1, 0.5) in x * a + (1 - x) * b
-InfinityOtherwise, if \(b\) is
Infinity
or-Infinity
, the result is \(b\).>>>
let (a, b, x) = (1, inf, 0.5) in x * a + (1 - x) * b
Infinity>>>
let (a, b, x) = (1, -inf, 0.5) in x * a + (1 - x) * b
-Infinity
Note that the GCC 10.1.0 C++ standard library, the Java 10 standard library and CPython 3.8 use the same procedure to generate floating point values in a range.
References
- Guy L. Steele, Jr., Doug Lea, and Christine H. Flood. 2014. Fast splittable pseudorandom number generators. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA '14). ACM, New York, NY, USA, 453-472. DOI: https://doi.org/10.1145/2660193.2660195