libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.Types.OutputConfig

Description

 
Synopsis

Documentation

data OutputConfig Source #

Contains information about the output location for the compiled model and the target device that the model runs on. TargetDevice and TargetPlatform are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from the TargetDevice list, use TargetPlatform to describe the platform of your edge device and CompilerOptions if there are specific settings that are required or recommended to use for particular TargetPlatform.

See: newOutputConfig smart constructor.

Constructors

OutputConfig' 

Fields

  • targetPlatform :: Maybe TargetPlatform

    Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

    The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

    • Raspberry Pi 3 Model B+

      "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
       "CompilerOptions": {'mattr': ['+neon']}
    • Jetson TX2

      "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
       "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
    • EC2 m5.2xlarge instance OS

      "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
       "CompilerOptions": {'mcpu': 'skylake-avx512'}
    • RK3399

      "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
    • ARMv7 phone (CPU)

      "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
       "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
    • ARMv8 phone (CPU)

      "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
       "CompilerOptions": {'ANDROID_PLATFORM': 29}
  • kmsKeyId :: Maybe Text

    The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

    The KmsKeyId can be any of the following formats:

    • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
    • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
    • Alias name: alias/ExampleAlias
    • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
  • compilerOptions :: Maybe Text

    Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

    • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

      • float32: Use either "float" or "float32".
      • int64: Use either "int64" or "long".

      For example, {"dtype" : "float32"}.

    • CPU: Compilation for CPU supports the following compiler options.

      • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
      • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
    • ARM: Details of ARM CPU compilations.

      • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

        For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

    • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

      • gpu_code: Specifies the targeted architecture.
      • trt-ver: Specifies the TensorRT versions in x.y.z. format.
      • cuda-ver: Specifies the CUDA version in x.y format.

      For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

    • ANDROID: Compilation for the Android OS supports the following compiler options:

      • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.
      • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.
    • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

      For information about supported compiler options, see Neuron Compiler CLI.

    • CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:

      • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
    • EIA: Compilation for the Elastic Inference Accelerator supports the following compiler options:

      • precision_mode: Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32". Default is "FP32".
      • signature_def_key: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.
      • output_names: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names.

      For example: {"precision_mode": "FP32", "output_names": ["output:0"]}

  • targetDevice :: Maybe TargetDevice

    Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

  • s3OutputLocation :: Text

    Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

Instances

Instances details
Eq OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

Read OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

Show OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

Generic OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

Associated Types

type Rep OutputConfig :: Type -> Type #

NFData OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

Methods

rnf :: OutputConfig -> () #

Hashable OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

ToJSON OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

FromJSON OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

type Rep OutputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.OutputConfig

type Rep OutputConfig = D1 ('MetaData "OutputConfig" "Amazonka.SageMaker.Types.OutputConfig" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "OutputConfig'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "targetPlatform") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe TargetPlatform)) :*: S1 ('MetaSel ('Just "kmsKeyId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text))) :*: (S1 ('MetaSel ('Just "compilerOptions") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "targetDevice") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe TargetDevice)) :*: S1 ('MetaSel ('Just "s3OutputLocation") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))

newOutputConfig Source #

Create a value of OutputConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:targetPlatform:OutputConfig', outputConfig_targetPlatform - Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

  • Raspberry Pi 3 Model B+

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
     "CompilerOptions": {'mattr': ['+neon']}
  • Jetson TX2

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
     "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
  • EC2 m5.2xlarge instance OS

    "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
     "CompilerOptions": {'mcpu': 'skylake-avx512'}
  • RK3399

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
  • ARMv7 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
     "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
  • ARMv8 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
     "CompilerOptions": {'ANDROID_PLATFORM': 29}

$sel:kmsKeyId:OutputConfig', outputConfig_kmsKeyId - The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
  • Alias name: alias/ExampleAlias
  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

$sel:compilerOptions:OutputConfig', outputConfig_compilerOptions - Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

  • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

    • float32: Use either "float" or "float32".
    • int64: Use either "int64" or "long".

    For example, {"dtype" : "float32"}.

  • CPU: Compilation for CPU supports the following compiler options.

    • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
    • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
  • ARM: Details of ARM CPU compilations.

    • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

      For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

  • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

    • gpu_code: Specifies the targeted architecture.
    • trt-ver: Specifies the TensorRT versions in x.y.z. format.
    • cuda-ver: Specifies the CUDA version in x.y format.

    For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

  • ANDROID: Compilation for the Android OS supports the following compiler options:

    • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.
    • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.
  • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

    For information about supported compiler options, see Neuron Compiler CLI.

  • CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:

    • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
  • EIA: Compilation for the Elastic Inference Accelerator supports the following compiler options:

    • precision_mode: Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32". Default is "FP32".
    • signature_def_key: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.
    • output_names: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names.

    For example: {"precision_mode": "FP32", "output_names": ["output:0"]}

$sel:targetDevice:OutputConfig', outputConfig_targetDevice - Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

$sel:s3OutputLocation:OutputConfig', outputConfig_s3OutputLocation - Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.

outputConfig_targetPlatform :: Lens' OutputConfig (Maybe TargetPlatform) Source #

Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice.

The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms:

  • Raspberry Pi 3 Model B+

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
     "CompilerOptions": {'mattr': ['+neon']}
  • Jetson TX2

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
     "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
  • EC2 m5.2xlarge instance OS

    "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
     "CompilerOptions": {'mcpu': 'skylake-avx512'}
  • RK3399

    "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
  • ARMv7 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
     "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
  • ARMv8 phone (CPU)

    "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
     "CompilerOptions": {'ANDROID_PLATFORM': 29}

outputConfig_kmsKeyId :: Lens' OutputConfig (Maybe Text) Source #

The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.

The KmsKeyId can be any of the following formats:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
  • Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
  • Alias name: alias/ExampleAlias
  • Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

outputConfig_compilerOptions :: Lens' OutputConfig (Maybe Text) Source #

Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions.

  • DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are:

    • float32: Use either "float" or "float32".
    • int64: Use either "int64" or "long".

    For example, {"dtype" : "float32"}.

  • CPU: Compilation for CPU supports the following compiler options.

    • mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
    • mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
  • ARM: Details of ARM CPU compilations.

    • NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.

      For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support.

  • NVIDIA: Compilation for NVIDIA GPU supports the following compiler options.

    • gpu_code: Specifies the targeted architecture.
    • trt-ver: Specifies the TensorRT versions in x.y.z. format.
    • cuda-ver: Specifies the CUDA version in x.y format.

    For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}

  • ANDROID: Compilation for the Android OS supports the following compiler options:

    • ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}.
    • mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support.
  • INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"".

    For information about supported compiler options, see Neuron Compiler CLI.

  • CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:

    • class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
  • EIA: Compilation for the Elastic Inference Accelerator supports the following compiler options:

    • precision_mode: Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32". Default is "FP32".
    • signature_def_key: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.
    • output_names: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names.

    For example: {"precision_mode": "FP32", "output_names": ["output:0"]}

outputConfig_targetDevice :: Lens' OutputConfig (Maybe TargetDevice) Source #

Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.

outputConfig_s3OutputLocation :: Lens' OutputConfig Text Source #

Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.