Copyright | (c) 2013-2021 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay+amazonka@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Synopsis
- data OutputConfig = OutputConfig' {}
- newOutputConfig :: Text -> OutputConfig
- outputConfig_targetPlatform :: Lens' OutputConfig (Maybe TargetPlatform)
- outputConfig_kmsKeyId :: Lens' OutputConfig (Maybe Text)
- outputConfig_compilerOptions :: Lens' OutputConfig (Maybe Text)
- outputConfig_targetDevice :: Lens' OutputConfig (Maybe TargetDevice)
- outputConfig_s3OutputLocation :: Lens' OutputConfig Text
Documentation
data OutputConfig Source #
Contains information about the output location for the compiled model
and the target device that the model runs on. TargetDevice
and
TargetPlatform
are mutually exclusive, so you need to choose one
between the two to specify your target device or platform. If you cannot
find your device you want to use from the TargetDevice
list, use
TargetPlatform
to describe the platform of your edge device and
CompilerOptions
if there are specific settings that are required or
recommended to use for particular TargetPlatform.
See: newOutputConfig
smart constructor.
OutputConfig' | |
|
Instances
Create a value of OutputConfig
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:targetPlatform:OutputConfig'
, outputConfig_targetPlatform
- Contains information about a target platform that you want your model to
run on, such as OS, architecture, and accelerators. It is an alternative
of TargetDevice
.
The following examples show how to configure the TargetPlatform
and
CompilerOptions
JSON strings for popular target platforms:
Raspberry Pi 3 Model B+
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
"CompilerOptions": {'mattr': ['+neon']}
Jetson TX2
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
EC2 m5.2xlarge instance OS
"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'mcpu': 'skylake-avx512'}
RK3399
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
ARMv7 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
"CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
ARMv8 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
"CompilerOptions": {'ANDROID_PLATFORM': 29}
$sel:kmsKeyId:OutputConfig'
, outputConfig_kmsKeyId
- The Amazon Web Services Key Management Service key (Amazon Web Services
KMS) that Amazon SageMaker uses to encrypt your output models with
Amazon S3 server-side encryption after compilation job. If you don't
provide a KMS key ID, Amazon SageMaker uses the default KMS key for
Amazon S3 for your role's account. For more information, see
KMS-Managed Encryption Keys
in the Amazon Simple Storage Service Developer Guide.
The KmsKeyId can be any of the following formats:
- Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
- Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
- Alias name:
alias/ExampleAlias
- Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
$sel:compilerOptions:OutputConfig'
, outputConfig_compilerOptions
- Specifies additional parameters for compiler options in JSON format. The
compiler options are TargetPlatform
specific. It is required for
NVIDIA accelerators and highly recommended for CPU compilations. For any
other cases, it is optional to specify CompilerOptions.
DTYPE
: Specifies the data type for the input. When compiling forml_*
(except forml_inf
) instances using PyTorch framework, provide the data type (dtype) of the model's input."float32"
is used if"DTYPE"
is not specified. Options for data type are:- float32: Use either
"float"
or"float32"
. - int64: Use either
"int64"
or"long"
.
For example,
{"dtype" : "float32"}
.- float32: Use either
CPU
: Compilation for CPU supports the following compiler options.mcpu
: CPU micro-architecture. For example,{'mcpu': 'skylake-avx512'}
mattr
: CPU flags. For example,{'mattr': ['+neon', '+vfpv4']}
ARM
: Details of ARM CPU compilations.NEON
: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.For example, add
{'mattr': ['+neon']}
to the compiler options if compiling for ARM 32-bit platform with the NEON support.
NVIDIA
: Compilation for NVIDIA GPU supports the following compiler options.gpu_code
: Specifies the targeted architecture.trt-ver
: Specifies the TensorRT versions in x.y.z. format.cuda-ver
: Specifies the CUDA version in x.y format.
For example,
{'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
ANDROID
: Compilation for the Android OS supports the following compiler options:ANDROID_PLATFORM
: Specifies the Android API levels. Available levels range from 21 to 29. For example,{'ANDROID_PLATFORM': 28}
.mattr
: Add{'mattr': ['+neon']}
to compiler options if compiling for ARM 32-bit platform with NEON support.
INFERENTIA
: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example,"CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\""
.For information about supported compiler options, see Neuron Compiler CLI.
CoreML
: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:class_labels
: Specifies the classification labels file name inside input tar.gz file. For example,{"class_labels": "imagenet_labels_1000.txt"}
. Labels inside the txt file should be separated by newlines.
EIA
: Compilation for the Elastic Inference Accelerator supports the following compiler options:precision_mode
: Specifies the precision of compiled artifacts. Supported values are"FP16"
and"FP32"
. Default is"FP32"
.signature_def_key
: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.output_names
: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either:signature_def_key
oroutput_names
.
For example:
{"precision_mode": "FP32", "output_names": ["output:0"]}
$sel:targetDevice:OutputConfig'
, outputConfig_targetDevice
- Identifies the target device or the machine learning instance that you
want to run your model on after the compilation has completed.
Alternatively, you can specify OS, architecture, and accelerator using
TargetPlatform fields. It can be used instead of TargetPlatform
.
$sel:s3OutputLocation:OutputConfig'
, outputConfig_s3OutputLocation
- Identifies the S3 bucket where you want Amazon SageMaker to store the
model artifacts. For example, s3://bucket-name/key-name-prefix
.
outputConfig_targetPlatform :: Lens' OutputConfig (Maybe TargetPlatform) Source #
Contains information about a target platform that you want your model to
run on, such as OS, architecture, and accelerators. It is an alternative
of TargetDevice
.
The following examples show how to configure the TargetPlatform
and
CompilerOptions
JSON strings for popular target platforms:
Raspberry Pi 3 Model B+
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"},
"CompilerOptions": {'mattr': ['+neon']}
Jetson TX2
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'}
EC2 m5.2xlarge instance OS
"TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"},
"CompilerOptions": {'mcpu': 'skylake-avx512'}
RK3399
"TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"}
ARMv7 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
"CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
ARMv8 phone (CPU)
"TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
"CompilerOptions": {'ANDROID_PLATFORM': 29}
outputConfig_kmsKeyId :: Lens' OutputConfig (Maybe Text) Source #
The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide.
The KmsKeyId can be any of the following formats:
- Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
- Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
- Alias name:
alias/ExampleAlias
- Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
outputConfig_compilerOptions :: Lens' OutputConfig (Maybe Text) Source #
Specifies additional parameters for compiler options in JSON format. The
compiler options are TargetPlatform
specific. It is required for
NVIDIA accelerators and highly recommended for CPU compilations. For any
other cases, it is optional to specify CompilerOptions.
DTYPE
: Specifies the data type for the input. When compiling forml_*
(except forml_inf
) instances using PyTorch framework, provide the data type (dtype) of the model's input."float32"
is used if"DTYPE"
is not specified. Options for data type are:- float32: Use either
"float"
or"float32"
. - int64: Use either
"int64"
or"long"
.
For example,
{"dtype" : "float32"}
.- float32: Use either
CPU
: Compilation for CPU supports the following compiler options.mcpu
: CPU micro-architecture. For example,{'mcpu': 'skylake-avx512'}
mattr
: CPU flags. For example,{'mattr': ['+neon', '+vfpv4']}
ARM
: Details of ARM CPU compilations.NEON
: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors.For example, add
{'mattr': ['+neon']}
to the compiler options if compiling for ARM 32-bit platform with the NEON support.
NVIDIA
: Compilation for NVIDIA GPU supports the following compiler options.gpu_code
: Specifies the targeted architecture.trt-ver
: Specifies the TensorRT versions in x.y.z. format.cuda-ver
: Specifies the CUDA version in x.y format.
For example,
{'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
ANDROID
: Compilation for the Android OS supports the following compiler options:ANDROID_PLATFORM
: Specifies the Android API levels. Available levels range from 21 to 29. For example,{'ANDROID_PLATFORM': 28}
.mattr
: Add{'mattr': ['+neon']}
to compiler options if compiling for ARM 32-bit platform with NEON support.
INFERENTIA
: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example,"CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\""
.For information about supported compiler options, see Neuron Compiler CLI.
CoreML
: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options:class_labels
: Specifies the classification labels file name inside input tar.gz file. For example,{"class_labels": "imagenet_labels_1000.txt"}
. Labels inside the txt file should be separated by newlines.
EIA
: Compilation for the Elastic Inference Accelerator supports the following compiler options:precision_mode
: Specifies the precision of compiled artifacts. Supported values are"FP16"
and"FP32"
. Default is"FP32"
.signature_def_key
: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key.output_names
: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either:signature_def_key
oroutput_names
.
For example:
{"precision_mode": "FP32", "output_names": ["output:0"]}
outputConfig_targetDevice :: Lens' OutputConfig (Maybe TargetDevice) Source #
Identifies the target device or the machine learning instance that you
want to run your model on after the compilation has completed.
Alternatively, you can specify OS, architecture, and accelerator using
TargetPlatform fields. It can be used instead of TargetPlatform
.
outputConfig_s3OutputLocation :: Lens' OutputConfig Text Source #
Identifies the S3 bucket where you want Amazon SageMaker to store the
model artifacts. For example, s3://bucket-name/key-name-prefix
.