libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Description

 
Synopsis

Documentation

data ModelPackageContainerDefinition Source #

Describes the Docker container for the model package.

See: newModelPackageContainerDefinition smart constructor.

Constructors

ModelPackageContainerDefinition' 

Fields

  • modelDataUrl :: Maybe Text

    The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

    The model artifacts must be in an S3 bucket that is in the same region as the model package.

  • environment :: Maybe (HashMap Text Text)

    The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

  • imageDigest :: Maybe Text

    An MD5 hash of the training algorithm that identifies the Docker image used for training.

  • containerHostname :: Maybe Text

    The DNS host name for the Docker container.

  • productId :: Maybe Text

    The Amazon Web Services Marketplace product ID of the model package.

  • image :: Text

    The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

    If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

Instances

Instances details
Eq ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Read ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Show ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Generic ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Associated Types

type Rep ModelPackageContainerDefinition :: Type -> Type #

NFData ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

Hashable ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

ToJSON ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

FromJSON ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

type Rep ModelPackageContainerDefinition Source # 
Instance details

Defined in Amazonka.SageMaker.Types.ModelPackageContainerDefinition

type Rep ModelPackageContainerDefinition = D1 ('MetaData "ModelPackageContainerDefinition" "Amazonka.SageMaker.Types.ModelPackageContainerDefinition" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "ModelPackageContainerDefinition'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "modelDataUrl") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "environment") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe (HashMap Text Text))) :*: S1 ('MetaSel ('Just "imageDigest") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)))) :*: (S1 ('MetaSel ('Just "containerHostname") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: (S1 ('MetaSel ('Just "productId") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "image") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))))

newModelPackageContainerDefinition Source #

Create a value of ModelPackageContainerDefinition with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:modelDataUrl:ModelPackageContainerDefinition', modelPackageContainerDefinition_modelDataUrl - The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same region as the model package.

$sel:environment:ModelPackageContainerDefinition', modelPackageContainerDefinition_environment - The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

$sel:imageDigest:ModelPackageContainerDefinition', modelPackageContainerDefinition_imageDigest - An MD5 hash of the training algorithm that identifies the Docker image used for training.

$sel:containerHostname:ModelPackageContainerDefinition', modelPackageContainerDefinition_containerHostname - The DNS host name for the Docker container.

$sel:productId:ModelPackageContainerDefinition', modelPackageContainerDefinition_productId - The Amazon Web Services Marketplace product ID of the model package.

$sel:image:ModelPackageContainerDefinition', modelPackageContainerDefinition_image - The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

modelPackageContainerDefinition_modelDataUrl :: Lens' ModelPackageContainerDefinition (Maybe Text) Source #

The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same region as the model package.

modelPackageContainerDefinition_environment :: Lens' ModelPackageContainerDefinition (Maybe (HashMap Text Text)) Source #

The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

modelPackageContainerDefinition_imageDigest :: Lens' ModelPackageContainerDefinition (Maybe Text) Source #

An MD5 hash of the training algorithm that identifies the Docker image used for training.

modelPackageContainerDefinition_productId :: Lens' ModelPackageContainerDefinition (Maybe Text) Source #

The Amazon Web Services Marketplace product ID of the model package.

modelPackageContainerDefinition_image :: Lens' ModelPackageContainerDefinition Text Source #

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.