libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.SageMaker.Types.InputConfig

Description

 
Synopsis

Documentation

data InputConfig Source #

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

See: newInputConfig smart constructor.

Constructors

InputConfig' 

Fields

  • frameworkVersion :: Maybe Text

    Specifies the framework version to use.

    This API field is only supported for PyTorch framework versions 1.4, 1.5, and 1.6 for cloud instance target devices: ml_c4, ml_c5, ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn.

  • s3Uri :: Text

    The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

  • dataInputConfig :: Text

    Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

    • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

      • Examples for one input:

        • If using the console, {"input":[1,1024,1024,3]}
        • If using the CLI, {\"input\":[1,1024,1024,3]}
      • Examples for two inputs:

        • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
        • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
    • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

      • Examples for one input:

        • If using the console, {"input_1":[1,3,224,224]}
        • If using the CLI, {\"input_1\":[1,3,224,224]}
      • Examples for two inputs:

        • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
        • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
    • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

      • Examples for one input:

        • If using the console, {"data":[1,3,1024,1024]}
        • If using the CLI, {\"data\":[1,3,1024,1024]}
      • Examples for two inputs:

        • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
        • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
    • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

      • Examples for one input in dictionary format:

        • If using the console, {"input0":[1,3,224,224]}
        • If using the CLI, {\"input0\":[1,3,224,224]}
      • Example for one input in list format: [[1,3,224,224]]
      • Examples for two inputs in dictionary format:

        • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
        • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
      • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
    • XGBOOST: input data name and shape are not needed.

    DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):

    • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

      • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
      • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
    • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
    • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.
    • bias: If the input type is an Image, you need to provide the bias vector.
    • scale: If the input type is an Image, you need to provide a scale factor.

    CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

    • Tensor type input:

      • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
    • Tensor type input without input name (PyTorch):

      • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
    • Image type input:

      • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
      • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
    • Image type input without input name (PyTorch):

      • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
      • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

    Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

    • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

      • "DataInputConfig": {"inputs": [1, 224, 224, 3]}
      • "CompilerOptions": {"signature_def_key": "serving_custom"}
    • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

      • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
      • "CompilerOptions": {"output_names": ["output_tensor:0"]}
  • framework :: Framework

    Identifies the framework in which the model was trained. For example: TENSORFLOW.

Instances

Instances details
Eq InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

Read InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

Show InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

Generic InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

Associated Types

type Rep InputConfig :: Type -> Type #

NFData InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

Methods

rnf :: InputConfig -> () #

Hashable InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

ToJSON InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

FromJSON InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

type Rep InputConfig Source # 
Instance details

Defined in Amazonka.SageMaker.Types.InputConfig

type Rep InputConfig = D1 ('MetaData "InputConfig" "Amazonka.SageMaker.Types.InputConfig" "libZSservicesZSamazonka-sagemakerZSamazonka-sagemaker" 'False) (C1 ('MetaCons "InputConfig'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "frameworkVersion") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "s3Uri") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)) :*: (S1 ('MetaSel ('Just "dataInputConfig") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text) :*: S1 ('MetaSel ('Just "framework") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Framework))))

newInputConfig Source #

Create a value of InputConfig with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:frameworkVersion:InputConfig', inputConfig_frameworkVersion - Specifies the framework version to use.

This API field is only supported for PyTorch framework versions 1.4, 1.5, and 1.6 for cloud instance target devices: ml_c4, ml_c5, ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn.

$sel:s3Uri:InputConfig', inputConfig_s3Uri - The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

$sel:dataInputConfig:InputConfig', inputConfig_dataInputConfig - Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

  • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input":[1,1024,1024,3]}
      • If using the CLI, {\"input\":[1,1024,1024,3]}
    • Examples for two inputs:

      • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
      • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
  • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input_1":[1,3,224,224]}
      • If using the CLI, {\"input_1\":[1,3,224,224]}
    • Examples for two inputs:

      • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
      • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
  • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"data":[1,3,1024,1024]}
      • If using the CLI, {\"data\":[1,3,1024,1024]}
    • Examples for two inputs:

      • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
      • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
  • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

    • Examples for one input in dictionary format:

      • If using the console, {"input0":[1,3,224,224]}
      • If using the CLI, {\"input0\":[1,3,224,224]}
    • Example for one input in list format: [[1,3,224,224]]
    • Examples for two inputs in dictionary format:

      • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
      • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
    • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
  • XGBOOST: input data name and shape are not needed.

DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):

  • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

    • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
    • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
  • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
  • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.
  • bias: If the input type is an Image, you need to provide the bias vector.
  • scale: If the input type is an Image, you need to provide a scale factor.

CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

  • Tensor type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
  • Tensor type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
  • Image type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
  • Image type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

  • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

    • "DataInputConfig": {"inputs": [1, 224, 224, 3]}
    • "CompilerOptions": {"signature_def_key": "serving_custom"}
  • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

    • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
    • "CompilerOptions": {"output_names": ["output_tensor:0"]}

$sel:framework:InputConfig', inputConfig_framework - Identifies the framework in which the model was trained. For example: TENSORFLOW.

inputConfig_frameworkVersion :: Lens' InputConfig (Maybe Text) Source #

Specifies the framework version to use.

This API field is only supported for PyTorch framework versions 1.4, 1.5, and 1.6 for cloud instance target devices: ml_c4, ml_c5, ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn.

inputConfig_s3Uri :: Lens' InputConfig Text Source #

The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

inputConfig_dataInputConfig :: Lens' InputConfig Text Source #

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

  • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input":[1,1024,1024,3]}
      • If using the CLI, {\"input\":[1,1024,1024,3]}
    • Examples for two inputs:

      • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
      • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
  • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"input_1":[1,3,224,224]}
      • If using the CLI, {\"input_1\":[1,3,224,224]}
    • Examples for two inputs:

      • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
      • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
  • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, {"data":[1,3,1024,1024]}
      • If using the CLI, {\"data\":[1,3,1024,1024]}
    • Examples for two inputs:

      • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
      • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
  • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

    • Examples for one input in dictionary format:

      • If using the console, {"input0":[1,3,224,224]}
      • If using the CLI, {\"input0\":[1,3,224,224]}
    • Example for one input in list format: [[1,3,224,224]]
    • Examples for two inputs in dictionary format:

      • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
      • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
    • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
  • XGBOOST: input data name and shape are not needed.

DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):

  • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

    • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
    • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
  • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
  • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.
  • bias: If the input type is an Image, you need to provide the bias vector.
  • scale: If the input type is an Image, you need to provide a scale factor.

CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

  • Tensor type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
  • Tensor type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
  • Image type input:

    • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
  • Image type input without input name (PyTorch):

    • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
    • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

  • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

    • "DataInputConfig": {"inputs": [1, 224, 224, 3]}
    • "CompilerOptions": {"signature_def_key": "serving_custom"}
  • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

    • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
    • "CompilerOptions": {"output_names": ["output_tensor:0"]}

inputConfig_framework :: Lens' InputConfig Framework Source #

Identifies the framework in which the model was trained. For example: TENSORFLOW.