Copyright | (c) 2013-2021 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay+amazonka@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Synopsis
- data InputConfig = InputConfig' {}
- newInputConfig :: Text -> Text -> Framework -> InputConfig
- inputConfig_frameworkVersion :: Lens' InputConfig (Maybe Text)
- inputConfig_s3Uri :: Lens' InputConfig Text
- inputConfig_dataInputConfig :: Lens' InputConfig Text
- inputConfig_framework :: Lens' InputConfig Framework
Documentation
data InputConfig Source #
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
See: newInputConfig
smart constructor.
InputConfig' | |
|
Instances
:: Text | |
-> Text | |
-> Framework | |
-> InputConfig |
Create a value of InputConfig
with all optional fields omitted.
Use generic-lens or optics to modify other optional fields.
The following record fields are available, with the corresponding lenses provided for backwards compatibility:
$sel:frameworkVersion:InputConfig'
, inputConfig_frameworkVersion
- Specifies the framework version to use.
This API field is only supported for PyTorch framework versions 1.4
,
1.5
, and 1.6
for cloud instance target devices: ml_c4
, ml_c5
,
ml_m4
, ml_m5
, ml_p2
, ml_p3
, and ml_g4dn
.
$sel:s3Uri:InputConfig'
, inputConfig_s3Uri
- The S3 path where the model artifacts, which result from model training,
are stored. This path must point to a single gzip compressed tar archive
(.tar.gz suffix).
$sel:dataInputConfig:InputConfig'
, inputConfig_dataInputConfig
- Specifies the name and shape of the expected data inputs for your
trained model with a JSON dictionary form. The data inputs are
InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"input":[1,1024,1024,3]}
- If using the CLI,
{\"input\":[1,1024,1024,3]}
- If using the console,
Examples for two inputs:
- If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
- If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
- If using the console,
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"input_1":[1,3,224,224]}
- If using the CLI,
{\"input_1\":[1,3,224,224]}
- If using the console,
Examples for two inputs:
- If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
- If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
- If using the console,
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"data":[1,3,1024,1024]}
- If using the CLI,
{\"data\":[1,3,1024,1024]}
- If using the console,
Examples for two inputs:
- If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
- If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
- If using the console,
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.Examples for one input in dictionary format:
- If using the console,
{"input0":[1,3,224,224]}
- If using the CLI,
{\"input0\":[1,3,224,224]}
- If using the console,
- Example for one input in list format:
[[1,3,224,224]]
Examples for two inputs in dictionary format:
- If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
- If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
- If using the console,
- Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:- Range Dimension. You can use the Range Dimension feature if you
know the input shape will be within some specific interval in
that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
- Enumerated shapes. Sometimes, the models are trained to work
only on a select set of inputs. You can enumerate all supported
input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
- Range Dimension. You can use the Range Dimension feature if you
know the input shape will be within some specific interval in
that dimension, for example:
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values:Image
andTensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbias
andscale
.bias
: If the input type is an Image, you need to provide the bias vector.scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and
PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following
parameters for ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes forDataInputConfig
. Specify thesignature_def_key
in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names foroutput_names
in OutputConfig:CompilerOptions . For example:"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
$sel:framework:InputConfig'
, inputConfig_framework
- Identifies the framework in which the model was trained. For example:
TENSORFLOW.
inputConfig_frameworkVersion :: Lens' InputConfig (Maybe Text) Source #
Specifies the framework version to use.
This API field is only supported for PyTorch framework versions 1.4
,
1.5
, and 1.6
for cloud instance target devices: ml_c4
, ml_c5
,
ml_m4
, ml_m5
, ml_p2
, ml_p3
, and ml_g4dn
.
inputConfig_s3Uri :: Lens' InputConfig Text Source #
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
inputConfig_dataInputConfig :: Lens' InputConfig Text Source #
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"input":[1,1024,1024,3]}
- If using the CLI,
{\"input\":[1,1024,1024,3]}
- If using the console,
Examples for two inputs:
- If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
- If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
- If using the console,
KERAS
: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfig
should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"input_1":[1,3,224,224]}
- If using the CLI,
{\"input_1\":[1,3,224,224]}
- If using the console,
Examples for two inputs:
- If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
- If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
- If using the console,
MXNET/ONNX/DARKNET
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
- If using the console,
{"data":[1,3,1024,1024]}
- If using the CLI,
{\"data\":[1,3,1024,1024]}
- If using the console,
Examples for two inputs:
- If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
- If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
- If using the console,
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.Examples for one input in dictionary format:
- If using the console,
{"input0":[1,3,224,224]}
- If using the CLI,
{\"input0\":[1,3,224,224]}
- If using the console,
- Example for one input in list format:
[[1,3,224,224]]
Examples for two inputs in dictionary format:
- If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
- If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
- If using the console,
- Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
XGBOOST
: input data name and shape are not needed.
DataInputConfig
supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape
: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}
. In addition to static input shapes, CoreML converter supports Flexible input shapes:- Range Dimension. You can use the Range Dimension feature if you
know the input shape will be within some specific interval in
that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}
- Enumerated shapes. Sometimes, the models are trained to work
only on a select set of inputs. You can enumerate all supported
input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
- Range Dimension. You can use the Range Dimension feature if you
know the input shape will be within some specific interval in
that dimension, for example:
default_shape
: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}
type
: Input type. Allowed values:Image
andTensor
. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbias
andscale
.bias
: If the input type is an Image, you need to provide the bias vector.scale
: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig
parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and
PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]
"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Depending on the model format, DataInputConfig
requires the following
parameters for ml_eia2
OutputConfig:TargetDevice.
For TensorFlow models saved in the SavedModel format, specify the input names from
signature_def_key
and the input model shapes forDataInputConfig
. Specify thesignature_def_key
in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:"DataInputConfig": {"inputs": [1, 224, 224, 3]}
"CompilerOptions": {"signature_def_key": "serving_custom"}
For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in
DataInputConfig
and the output tensor names foroutput_names
in OutputConfig:CompilerOptions . For example:"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
"CompilerOptions": {"output_names": ["output_tensor:0"]}
inputConfig_framework :: Lens' InputConfig Framework Source #
Identifies the framework in which the model was trained. For example: TENSORFLOW.