libZSservicesZSamazonka-rekognitionZSamazonka-rekognition
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Rekognition.Types.Gender

Description

 
Synopsis

Documentation

data Gender Source #

The predicted gender of a detected face.

Amazon Rekognition makes gender binary (male/female) predictions based on the physical appearance of a face in a particular image. This kind of prediction is not designed to categorize a person’s gender identity, and you shouldn't use Amazon Rekognition to make such a determination. For example, a male actor wearing a long-haired wig and earrings for a role might be predicted as female.

Using Amazon Rekognition to make gender binary predictions is best suited for use cases where aggregate gender distribution statistics need to be analyzed without identifying specific users. For example, the percentage of female users compared to male users on a social media platform.

We don't recommend using gender binary predictions to make decisions that impact
 an individual's rights, privacy, or access to services.

See: newGender smart constructor.

Constructors

Gender' 

Fields

Instances

Instances details
Eq Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Methods

(==) :: Gender -> Gender -> Bool #

(/=) :: Gender -> Gender -> Bool #

Read Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Show Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Generic Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Associated Types

type Rep Gender :: Type -> Type #

Methods

from :: Gender -> Rep Gender x #

to :: Rep Gender x -> Gender #

NFData Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Methods

rnf :: Gender -> () #

Hashable Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

Methods

hashWithSalt :: Int -> Gender -> Int #

hash :: Gender -> Int #

FromJSON Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

type Rep Gender Source # 
Instance details

Defined in Amazonka.Rekognition.Types.Gender

type Rep Gender = D1 ('MetaData "Gender" "Amazonka.Rekognition.Types.Gender" "libZSservicesZSamazonka-rekognitionZSamazonka-rekognition" 'False) (C1 ('MetaCons "Gender'" 'PrefixI 'True) (S1 ('MetaSel ('Just "value") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe GenderType)) :*: S1 ('MetaSel ('Just "confidence") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))))

newGender :: Gender Source #

Create a value of Gender with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:value:Gender', gender_value - The predicted gender of the face.

$sel:confidence:Gender', gender_confidence - Level of confidence in the prediction.

gender_value :: Lens' Gender (Maybe GenderType) Source #

The predicted gender of the face.

gender_confidence :: Lens' Gender (Maybe Double) Source #

Level of confidence in the prediction.