libZSservicesZSamazonka-rekognitionZSamazonka-rekognition
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Rekognition.Types.EvaluationResult

Description

 
Synopsis

Documentation

data EvaluationResult Source #

The evaluation results for the training of a model.

See: newEvaluationResult smart constructor.

Constructors

EvaluationResult' 

Fields

  • summary :: Maybe Summary

    The S3 bucket that contains the training summary.

  • f1Score :: Maybe Double

    The F1 score for the evaluation of all labels. The F1 score metric evaluates the overall precision and recall performance of the model as a single value. A higher value indicates better precision and recall performance. A lower score indicates that precision, recall, or both are performing poorly.

Instances

Instances details
Eq EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

Read EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

Show EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

Generic EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

Associated Types

type Rep EvaluationResult :: Type -> Type #

NFData EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

Methods

rnf :: EvaluationResult -> () #

Hashable EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

FromJSON EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

type Rep EvaluationResult Source # 
Instance details

Defined in Amazonka.Rekognition.Types.EvaluationResult

type Rep EvaluationResult = D1 ('MetaData "EvaluationResult" "Amazonka.Rekognition.Types.EvaluationResult" "libZSservicesZSamazonka-rekognitionZSamazonka-rekognition" 'False) (C1 ('MetaCons "EvaluationResult'" 'PrefixI 'True) (S1 ('MetaSel ('Just "summary") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Summary)) :*: S1 ('MetaSel ('Just "f1Score") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double))))

newEvaluationResult :: EvaluationResult Source #

Create a value of EvaluationResult with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:summary:EvaluationResult', evaluationResult_summary - The S3 bucket that contains the training summary.

$sel:f1Score:EvaluationResult', evaluationResult_f1Score - The F1 score for the evaluation of all labels. The F1 score metric evaluates the overall precision and recall performance of the model as a single value. A higher value indicates better precision and recall performance. A lower score indicates that precision, recall, or both are performing poorly.

evaluationResult_summary :: Lens' EvaluationResult (Maybe Summary) Source #

The S3 bucket that contains the training summary.

evaluationResult_f1Score :: Lens' EvaluationResult (Maybe Double) Source #

The F1 score for the evaluation of all labels. The F1 score metric evaluates the overall precision and recall performance of the model as a single value. A higher value indicates better precision and recall performance. A lower score indicates that precision, recall, or both are performing poorly.