libZSservicesZSamazonka-rekognitionZSamazonka-rekognition
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Rekognition.DetectLabels

Description

Detects instances of real-world entities within an image (JPEG or PNG) provided as input. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like landscape, evening, and nature.

For an example, see Analyzing Images Stored in an Amazon S3 Bucket in the Amazon Rekognition Developer Guide.

DetectLabels does not support the detection of activities. However, activity detection is supported for label detection in videos. For more information, see StartLabelDetection in the Amazon Rekognition Developer Guide.

You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file.

For each object, scene, and concept the API returns one or more labels. Each label provides the object name, and the level of confidence that the image contains the object. For example, suppose the input image has a lighthouse, the sea, and a rock. The response includes all three labels, one for each object.

{Name: lighthouse, Confidence: 98.4629}
{Name: rock,Confidence: 79.2097}
 {Name: sea,Confidence: 75.061}

In the preceding example, the operation returns one label for each of the three objects. The operation can also return multiple labels for the same object in the image. For example, if the input image shows a flower (for example, a tulip), the operation might return the following three labels.

{Name: flower,Confidence: 99.0562}
{Name: plant,Confidence: 99.0562}
{Name: tulip,Confidence: 99.0562}

In this example, the detection algorithm more precisely identifies the flower as a tulip.

In response, the API returns an array of labels. In addition, the response also includes the orientation correction. Optionally, you can specify MinConfidence to control the confidence threshold for the labels returned. The default is 55%. You can also add the MaxLabels parameter to limit the number of labels returned.

If the object detected is a person, the operation doesn't provide the same facial details that the DetectFaces operation provides.

DetectLabels returns bounding boxes for instances of common object labels in an array of Instance objects. An Instance object contains a BoundingBox object, for the location of the label on the image. It also includes the confidence by which the bounding box was detected.

DetectLabels also returns a hierarchical taxonomy of detected labels. For example, a detected car might be assigned the label car. The label car has two parent labels: Vehicle (its parent) and Transportation (its grandparent). The response returns the entire list of ancestors for a label. Each ancestor is a unique label in the response. In the previous example, Car, Vehicle, and Transportation are returned as unique labels in the response.

This is a stateless API operation. That is, the operation does not persist any data.

This operation requires permissions to perform the rekognition:DetectLabels action.

Synopsis

Creating a Request

data DetectLabels Source #

See: newDetectLabels smart constructor.

Constructors

DetectLabels' 

Fields

  • minConfidence :: Maybe Double

    Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.

    If MinConfidence is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent.

  • maxLabels :: Maybe Natural

    Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels.

  • image :: Image

    The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.

    If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.

Instances

Instances details
Eq DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Read DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Show DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Generic DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Associated Types

type Rep DetectLabels :: Type -> Type #

NFData DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Methods

rnf :: DetectLabels -> () #

Hashable DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

ToJSON DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

AWSRequest DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Associated Types

type AWSResponse DetectLabels #

ToHeaders DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

ToPath DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

ToQuery DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

type Rep DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

type Rep DetectLabels = D1 ('MetaData "DetectLabels" "Amazonka.Rekognition.DetectLabels" "libZSservicesZSamazonka-rekognitionZSamazonka-rekognition" 'False) (C1 ('MetaCons "DetectLabels'" 'PrefixI 'True) (S1 ('MetaSel ('Just "minConfidence") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: (S1 ('MetaSel ('Just "maxLabels") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Natural)) :*: S1 ('MetaSel ('Just "image") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Image))))
type AWSResponse DetectLabels Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

newDetectLabels Source #

Create a value of DetectLabels with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:minConfidence:DetectLabels', detectLabels_minConfidence - Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.

If MinConfidence is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent.

$sel:maxLabels:DetectLabels', detectLabels_maxLabels - Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels.

$sel:image:DetectLabels', detectLabels_image - The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.

If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.

Request Lenses

detectLabels_minConfidence :: Lens' DetectLabels (Maybe Double) Source #

Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.

If MinConfidence is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent.

detectLabels_maxLabels :: Lens' DetectLabels (Maybe Natural) Source #

Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels.

detectLabels_image :: Lens' DetectLabels Image Source #

The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.

If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the Bytes field. For more information, see Images in the Amazon Rekognition developer guide.

Destructuring the Response

data DetectLabelsResponse Source #

See: newDetectLabelsResponse smart constructor.

Constructors

DetectLabelsResponse' 

Fields

  • labels :: Maybe [Label]

    An array of labels for the real-world objects detected.

  • orientationCorrection :: Maybe OrientationCorrection

    The value of OrientationCorrection is always null.

    If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.

    Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated.

  • labelModelVersion :: Maybe Text

    Version number of the label detection model that was used to detect labels.

  • httpStatus :: Int

    The response's http status code.

Instances

Instances details
Eq DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Read DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Show DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Generic DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Associated Types

type Rep DetectLabelsResponse :: Type -> Type #

NFData DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

Methods

rnf :: DetectLabelsResponse -> () #

type Rep DetectLabelsResponse Source # 
Instance details

Defined in Amazonka.Rekognition.DetectLabels

type Rep DetectLabelsResponse = D1 ('MetaData "DetectLabelsResponse" "Amazonka.Rekognition.DetectLabels" "libZSservicesZSamazonka-rekognitionZSamazonka-rekognition" 'False) (C1 ('MetaCons "DetectLabelsResponse'" 'PrefixI 'True) ((S1 ('MetaSel ('Just "labels") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [Label])) :*: S1 ('MetaSel ('Just "orientationCorrection") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe OrientationCorrection))) :*: (S1 ('MetaSel ('Just "labelModelVersion") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Text)) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newDetectLabelsResponse Source #

Create a value of DetectLabelsResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:labels:DetectLabelsResponse', detectLabelsResponse_labels - An array of labels for the real-world objects detected.

$sel:orientationCorrection:DetectLabelsResponse', detectLabelsResponse_orientationCorrection - The value of OrientationCorrection is always null.

If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.

Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated.

$sel:labelModelVersion:DetectLabelsResponse', detectLabelsResponse_labelModelVersion - Version number of the label detection model that was used to detect labels.

$sel:httpStatus:DetectLabelsResponse', detectLabelsResponse_httpStatus - The response's http status code.

Response Lenses

detectLabelsResponse_labels :: Lens' DetectLabelsResponse (Maybe [Label]) Source #

An array of labels for the real-world objects detected.

detectLabelsResponse_orientationCorrection :: Lens' DetectLabelsResponse (Maybe OrientationCorrection) Source #

The value of OrientationCorrection is always null.

If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.

Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated.

detectLabelsResponse_labelModelVersion :: Lens' DetectLabelsResponse (Maybe Text) Source #

Version number of the label detection model that was used to detect labels.