libZSservicesZSamazonka-frauddetectorZSamazonka-frauddetector
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.FraudDetector.Types.TrainingMetrics

Description

 
Synopsis

Documentation

data TrainingMetrics Source #

The training metric details.

See: newTrainingMetrics smart constructor.

Constructors

TrainingMetrics' 

Fields

  • auc :: Maybe Double

    The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0.

  • metricDataPoints :: Maybe [MetricDataPoint]

    The data points details.

Instances

Instances details
Eq TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

Read TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

Show TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

Generic TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

Associated Types

type Rep TrainingMetrics :: Type -> Type #

NFData TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

Methods

rnf :: TrainingMetrics -> () #

Hashable TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

FromJSON TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

type Rep TrainingMetrics Source # 
Instance details

Defined in Amazonka.FraudDetector.Types.TrainingMetrics

type Rep TrainingMetrics = D1 ('MetaData "TrainingMetrics" "Amazonka.FraudDetector.Types.TrainingMetrics" "libZSservicesZSamazonka-frauddetectorZSamazonka-frauddetector" 'False) (C1 ('MetaCons "TrainingMetrics'" 'PrefixI 'True) (S1 ('MetaSel ('Just "auc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe Double)) :*: S1 ('MetaSel ('Just "metricDataPoints") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [MetricDataPoint]))))

newTrainingMetrics :: TrainingMetrics Source #

Create a value of TrainingMetrics with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:auc:TrainingMetrics', trainingMetrics_auc - The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0.

$sel:metricDataPoints:TrainingMetrics', trainingMetrics_metricDataPoints - The data points details.

trainingMetrics_auc :: Lens' TrainingMetrics (Maybe Double) Source #

The area under the curve. This summarizes true positive rate (TPR) and false positive rate (FPR) across all possible model score thresholds. A model with no predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0.