libZSservicesZSamazonka-comprehendZSamazonka-comprehend
Copyright(c) 2013-2021 Brendan Hay
LicenseMozilla Public License, v. 2.0.
MaintainerBrendan Hay <brendan.g.hay+amazonka@gmail.com>
Stabilityauto-generated
Portabilitynon-portable (GHC extensions)
Safe HaskellNone

Amazonka.Comprehend.ClassifyDocument

Description

Creates a new document classification request to analyze a single document in real-time, using a previously created and trained custom model and an endpoint.

Synopsis

Creating a Request

data ClassifyDocument Source #

See: newClassifyDocument smart constructor.

Constructors

ClassifyDocument' 

Fields

Instances

Instances details
Eq ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Show ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Generic ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Associated Types

type Rep ClassifyDocument :: Type -> Type #

NFData ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Methods

rnf :: ClassifyDocument -> () #

Hashable ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

ToJSON ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

AWSRequest ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Associated Types

type AWSResponse ClassifyDocument #

ToHeaders ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

ToPath ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

ToQuery ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

type Rep ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

type Rep ClassifyDocument = D1 ('MetaData "ClassifyDocument" "Amazonka.Comprehend.ClassifyDocument" "libZSservicesZSamazonka-comprehendZSamazonka-comprehend" 'False) (C1 ('MetaCons "ClassifyDocument'" 'PrefixI 'True) (S1 ('MetaSel ('Just "text") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Sensitive Text)) :*: S1 ('MetaSel ('Just "endpointArn") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Text)))
type AWSResponse ClassifyDocument Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

newClassifyDocument Source #

Create a value of ClassifyDocument with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:text:ClassifyDocument', classifyDocument_text - The document text to be analyzed.

$sel:endpointArn:ClassifyDocument', classifyDocument_endpointArn - The Amazon Resource Number (ARN) of the endpoint.

Request Lenses

classifyDocument_text :: Lens' ClassifyDocument Text Source #

The document text to be analyzed.

classifyDocument_endpointArn :: Lens' ClassifyDocument Text Source #

The Amazon Resource Number (ARN) of the endpoint.

Destructuring the Response

data ClassifyDocumentResponse Source #

See: newClassifyDocumentResponse smart constructor.

Constructors

ClassifyDocumentResponse' 

Fields

  • labels :: Maybe [DocumentLabel]

    The labels used the document being analyzed. These are used for multi-label trained models. Individual labels represent different categories that are related in some manner and are not mutually exclusive. For example, a movie can be just an action movie, or it can be an action movie, a science fiction movie, and a comedy, all at the same time.

  • classes :: Maybe [DocumentClass]

    The classes used by the document being analyzed. These are used for multi-class trained models. Individual classes are mutually exclusive and each document is expected to have only a single class assigned to it. For example, an animal can be a dog or a cat, but not both at the same time.

  • httpStatus :: Int

    The response's http status code.

Instances

Instances details
Eq ClassifyDocumentResponse Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Show ClassifyDocumentResponse Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Generic ClassifyDocumentResponse Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

Associated Types

type Rep ClassifyDocumentResponse :: Type -> Type #

NFData ClassifyDocumentResponse Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

type Rep ClassifyDocumentResponse Source # 
Instance details

Defined in Amazonka.Comprehend.ClassifyDocument

type Rep ClassifyDocumentResponse = D1 ('MetaData "ClassifyDocumentResponse" "Amazonka.Comprehend.ClassifyDocument" "libZSservicesZSamazonka-comprehendZSamazonka-comprehend" 'False) (C1 ('MetaCons "ClassifyDocumentResponse'" 'PrefixI 'True) (S1 ('MetaSel ('Just "labels") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [DocumentLabel])) :*: (S1 ('MetaSel ('Just "classes") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 (Maybe [DocumentClass])) :*: S1 ('MetaSel ('Just "httpStatus") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedStrict) (Rec0 Int))))

newClassifyDocumentResponse Source #

Create a value of ClassifyDocumentResponse with all optional fields omitted.

Use generic-lens or optics to modify other optional fields.

The following record fields are available, with the corresponding lenses provided for backwards compatibility:

$sel:labels:ClassifyDocumentResponse', classifyDocumentResponse_labels - The labels used the document being analyzed. These are used for multi-label trained models. Individual labels represent different categories that are related in some manner and are not mutually exclusive. For example, a movie can be just an action movie, or it can be an action movie, a science fiction movie, and a comedy, all at the same time.

$sel:classes:ClassifyDocumentResponse', classifyDocumentResponse_classes - The classes used by the document being analyzed. These are used for multi-class trained models. Individual classes are mutually exclusive and each document is expected to have only a single class assigned to it. For example, an animal can be a dog or a cat, but not both at the same time.

$sel:httpStatus:ClassifyDocumentResponse', classifyDocumentResponse_httpStatus - The response's http status code.

Response Lenses

classifyDocumentResponse_labels :: Lens' ClassifyDocumentResponse (Maybe [DocumentLabel]) Source #

The labels used the document being analyzed. These are used for multi-label trained models. Individual labels represent different categories that are related in some manner and are not mutually exclusive. For example, a movie can be just an action movie, or it can be an action movie, a science fiction movie, and a comedy, all at the same time.

classifyDocumentResponse_classes :: Lens' ClassifyDocumentResponse (Maybe [DocumentClass]) Source #

The classes used by the document being analyzed. These are used for multi-class trained models. Individual classes are mutually exclusive and each document is expected to have only a single class assigned to it. For example, an animal can be a dog or a cat, but not both at the same time.