cryptonite-0.29: Cryptography Primitives sink
LicenseBSD-style
MaintainerVincent Hanquez <vincent@snarc.org>
Stabilityexperimental
PortabilityGood
Safe HaskellNone
LanguageHaskell2010

Crypto.PubKey.DH

Description

 
Synopsis

Documentation

data Params #

Represent Diffie Hellman parameters namely P (prime), and G (generator).

Constructors

Params 

Instances

Instances details
Eq Params # 
Instance details

Defined in Crypto.PubKey.DH

Methods

(==) :: Params -> Params -> Bool #

(/=) :: Params -> Params -> Bool #

Data Params # 
Instance details

Defined in Crypto.PubKey.DH

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Params -> c Params #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Params #

toConstr :: Params -> Constr #

dataTypeOf :: Params -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Params) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Params) #

gmapT :: (forall b. Data b => b -> b) -> Params -> Params #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Params -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Params -> r #

gmapQ :: (forall d. Data d => d -> u) -> Params -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Params -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Params -> m Params #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Params -> m Params #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Params -> m Params #

Read Params # 
Instance details

Defined in Crypto.PubKey.DH

Show Params # 
Instance details

Defined in Crypto.PubKey.DH

NFData Params # 
Instance details

Defined in Crypto.PubKey.DH

Methods

rnf :: Params -> () #

newtype PublicNumber #

Represent Diffie Hellman public number Y.

Constructors

PublicNumber Integer 

Instances

Instances details
Enum PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Eq PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Num PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Ord PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Read PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Real PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Show PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

NFData PublicNumber # 
Instance details

Defined in Crypto.PubKey.DH

Methods

rnf :: PublicNumber -> () #

newtype PrivateNumber #

Represent Diffie Hellman private number X.

Constructors

PrivateNumber Integer 

Instances

Instances details
Enum PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Eq PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Num PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Ord PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Read PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Real PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Show PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

NFData PrivateNumber # 
Instance details

Defined in Crypto.PubKey.DH

Methods

rnf :: PrivateNumber -> () #

newtype SharedKey #

Represent Diffie Hellman shared secret.

Constructors

SharedKey ScrubbedBytes 

Instances

Instances details
Eq SharedKey # 
Instance details

Defined in Crypto.PubKey.DH

Show SharedKey # 
Instance details

Defined in Crypto.PubKey.DH

NFData SharedKey # 
Instance details

Defined in Crypto.PubKey.DH

Methods

rnf :: SharedKey -> () #

ByteArrayAccess SharedKey # 
Instance details

Defined in Crypto.PubKey.DH

Methods

length :: SharedKey -> Int #

withByteArray :: SharedKey -> (Ptr p -> IO a) -> IO a #

copyByteArrayToPtr :: SharedKey -> Ptr p -> IO () #

generateParams #

Arguments

:: MonadRandom m 
=> Int

number of bits

-> Integer

generator

-> m Params 

generate params from a specific generator (2 or 5 are common values) we generate a safe prime (a prime number of the form 2p+1 where p is also prime)

generatePrivate :: MonadRandom m => Params -> m PrivateNumber #

generate a private number with no specific property this number is usually called X in DH text.

calculatePublic :: Params -> PrivateNumber -> PublicNumber #

calculate the public number from the parameters and the private key this number is usually called Y in DH text.

generatePublic :: Params -> PrivateNumber -> PublicNumber #

calculate the public number from the parameters and the private key this number is usually called Y in DH text.

DEPRECATED use calculatePublic

getShared :: Params -> PrivateNumber -> PublicNumber -> SharedKey #

generate a shared key using our private number and the other party public number