bifunctors-5.5.11: Bifunctors
Safe HaskellSafe
LanguageHaskell2010

Data.Bifunctor.Functor

Synopsis

Documentation

type (:->) p q = forall a b. p a b -> q a b infixr 0 #

Using parametricity as an approximation of a natural transformation in two arguments.

class BifunctorFunctor t where #

Methods

bifmap :: (p :-> q) -> t p :-> t q #

Instances

Instances details
BifunctorFunctor (Flip :: (k1 -> k2 -> Type) -> k2 -> k1 -> Type) # 
Instance details

Defined in Data.Bifunctor.Flip

Methods

bifmap :: forall (p :: k -> k -> Type) (q :: k -> k -> Type). (p :-> q) -> Flip p :-> Flip q #

BifunctorFunctor (Product p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Product

Methods

bifmap :: forall (p0 :: k -> k -> Type) (q :: k -> k -> Type). (p0 :-> q) -> Product p p0 :-> Product p q #

BifunctorFunctor (Sum p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bifmap :: forall (p0 :: k -> k -> Type) (q :: k -> k -> Type). (p0 :-> q) -> Sum p p0 :-> Sum p q #

Functor f => BifunctorFunctor (Tannen f :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bifmap :: forall (p :: k -> k -> Type) (q :: k -> k -> Type). (p :-> q) -> Tannen f p :-> Tannen f q #

class BifunctorFunctor t => BifunctorMonad t where #

Minimal complete definition

bireturn, (bibind | bijoin)

Methods

bireturn :: p :-> t p #

bibind :: (p :-> t q) -> t p :-> t q #

bijoin :: t (t p) :-> t p #

Instances

Instances details
BifunctorMonad (Sum p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bireturn :: forall (p0 :: k -> k -> Type). p0 :-> Sum p p0 #

bibind :: forall (p0 :: k -> k -> Type) (q :: k -> k -> Type). (p0 :-> Sum p q) -> Sum p p0 :-> Sum p q #

bijoin :: forall (p0 :: k -> k -> Type). Sum p (Sum p p0) :-> Sum p p0 #

(Functor f, Monad f) => BifunctorMonad (Tannen f :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bireturn :: forall (p :: k -> k -> Type). p :-> Tannen f p #

bibind :: forall (p :: k -> k -> Type) (q :: k -> k -> Type). (p :-> Tannen f q) -> Tannen f p :-> Tannen f q #

bijoin :: forall (p :: k -> k -> Type). Tannen f (Tannen f p) :-> Tannen f p #

biliftM :: BifunctorMonad t => (p :-> q) -> t p :-> t q #

class BifunctorFunctor t => BifunctorComonad t where #

Minimal complete definition

biextract, (biextend | biduplicate)

Methods

biextract :: t p :-> p #

biextend :: (t p :-> q) -> t p :-> t q #

biduplicate :: t p :-> t (t p) #

Instances

Instances details
BifunctorComonad (Product p :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Product

Methods

biextract :: forall (p0 :: k -> k -> Type). Product p p0 :-> p0 #

biextend :: forall (p0 :: k -> k -> Type) (q :: k -> k -> Type). (Product p p0 :-> q) -> Product p p0 :-> Product p q #

biduplicate :: forall (p0 :: k -> k -> Type). Product p p0 :-> Product p (Product p p0) #

Comonad f => BifunctorComonad (Tannen f :: (k1 -> k2 -> Type) -> k1 -> k2 -> Type) # 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

biextract :: forall (p :: k -> k -> Type). Tannen f p :-> p #

biextend :: forall (p :: k -> k -> Type) (q :: k -> k -> Type). (Tannen f p :-> q) -> Tannen f p :-> Tannen f q #

biduplicate :: forall (p :: k -> k -> Type). Tannen f p :-> Tannen f (Tannen f p) #

biliftW :: BifunctorComonad t => (p :-> q) -> t p :-> t q #